qchess.py 73.3 KB
Newer Older
Sam Moore's avatar
Sam Moore committed
1
#!/usr/bin/python -u
Sam Moore's avatar
Sam Moore committed
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
import random

# I know using non-abreviated strings is inefficient, but this is python, who cares?
# Oh, yeah, this stores the number of pieces of each type in a normal chess game
piece_types = {"pawn" : 8, "bishop" : 2, "knight" : 2, "rook" : 2, "queen" : 1, "king" : 1, "unknown" : 0}

# Class to represent a quantum chess piece
class Piece():
	def __init__(self, colour, x, y, types):
		self.colour = colour # Colour (string) either "white" or "black"
		self.x = x # x coordinate (0 - 8), none of this fancy 'a', 'b' shit here
		self.y = y # y coordinate (0 - 8)
		self.types = types # List of possible types the piece can be (should just be two)
		self.current_type = "unknown" # Current type
		self.choice = -1 # Index of the current type in self.types (-1 = unknown type)
		
Sam Moore's avatar
Sam Moore committed
18
		
Sam Moore's avatar
Sam Moore committed
19
		self.last_state = None
Sam Moore's avatar
Sam Moore committed
20
		
Sam Moore's avatar
Sam Moore committed
21
		self.move_pattern = None
Sam Moore's avatar
Sam Moore committed
22
		self.coverage = None
Sam Moore's avatar
Sam Moore committed
23
		self.possible_moves = None
Sam Moore's avatar
Sam Moore committed
24 25 26 27 28 29 30 31 32
		

	def init_from_copy(self, c):
		self.colour = c.colour
		self.x = c.x
		self.y = c.y
		self.types = c.types[:]
		self.current_type = c.current_type
		self.choice = c.choice
Sam Moore's avatar
Sam Moore committed
33
		
Sam Moore's avatar
Sam Moore committed
34 35 36 37 38 39 40
		self.last_state = None
		self.move_pattern = None

	

	# Make a string for the piece (used for debug)
	def __str__(self):
41
		return str(self.colour) + " " + str(self.current_type) + " " + str(self.types) + " at " + str(self.x) + ","+str(self.y)  
Sam Moore's avatar
Sam Moore committed
42 43

	# Draw the piece in a pygame surface
Sam Moore's avatar
Sam Moore committed
44
	def draw(self, window, grid_sz = [80,80], style="quantum"):
Sam Moore's avatar
Sam Moore committed
45 46 47 48

		# First draw the image corresponding to self.current_type
		img = images[self.colour][self.current_type]
		rect = img.get_rect()
Sam Moore's avatar
Sam Moore committed
49 50 51 52
		if style == "classical":
			offset = [-rect.width/2, -rect.height/2]
		else:
			offset = [-rect.width/2,-3*rect.height/4] 
Sam Moore's avatar
Sam Moore committed
53 54 55
		window.blit(img, (self.x * grid_sz[0] + grid_sz[0]/2 + offset[0], self.y * grid_sz[1] + grid_sz[1]/2 + offset[1]))
		
		
Sam Moore's avatar
Sam Moore committed
56 57 58
		if style == "classical":
			return

Sam Moore's avatar
Sam Moore committed
59 60
		# Draw the two possible types underneath the current_type image
		for i in range(len(self.types)):
Sam Moore's avatar
Sam Moore committed
61
			if always_reveal_states == True or self.types[i][0] != '?':
Sam Moore's avatar
Sam Moore committed
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
				img = small_images[self.colour][self.types[i]]
			else:
				img = small_images[self.colour]["unknown"] # If the type hasn't been revealed, show a placeholder

			
			rect = img.get_rect()
			offset = [-rect.width/2,-rect.height/2] 
			
			if i == 0:
				target = (self.x * grid_sz[0] + grid_sz[0]/5 + offset[0], self.y * grid_sz[1] + 3*grid_sz[1]/4 + offset[1])				
			else:
				target = (self.x * grid_sz[0] + 4*grid_sz[0]/5 + offset[0], self.y * grid_sz[1] + 3*grid_sz[1]/4 + offset[1])				
				
			window.blit(img, target) # Blit shit
	
	# Collapses the wave function!		
	def select(self):
Sam Moore's avatar
Sam Moore committed
79
		if self.current_type == "unknown" or not self.choice in [0,1]:
Sam Moore's avatar
Sam Moore committed
80
			self.choice = random.randint(0,1)
Sam Moore's avatar
Sam Moore committed
81 82
			if self.types[self.choice][0] == '?':
				self.types[self.choice] = self.types[self.choice][1:]
Sam Moore's avatar
Sam Moore committed
83 84 85 86 87 88 89
			self.current_type = self.types[self.choice]
		return self.choice

	# Uncollapses (?) the wave function!
	def deselect(self):
		#print "Deselect called"
		if (self.x + self.y) % 2 != 0:
Sam Moore's avatar
Sam Moore committed
90
			if (self.types[0] != self.types[1]) or (self.types[0][0] == '?' or self.types[1][0] == '?'):
Sam Moore's avatar
Sam Moore committed
91 92 93 94 95 96 97
				self.current_type = "unknown"
				self.choice = -1
			else:
				self.choice = 0 # Both the two types are the same

	# The sad moment when you realise that you do not understand anything about a subject you studied for 4 years...
# --- piece.py --- #
Sam Moore's avatar
Sam Moore committed
98 99
[w,h] = [8,8] # Width and height of board(s)

100 101
always_reveal_states = False

Sam Moore's avatar
Sam Moore committed
102 103 104 105 106 107 108 109 110 111 112
# Class to represent a quantum chess board
class Board():
	# Initialise; if master=True then the secondary piece types are assigned
	#	Otherwise, they are left as unknown
	#	So you can use this class in Agent programs, and fill in the types as they are revealed
	def __init__(self, style="agent"):
		self.style = style
		self.pieces = {"white" : [], "black" : []}
		self.grid = [[None] * w for _ in range(h)] # 2D List (you can get arrays in python, somehow, but they scare me)
		self.unrevealed_types = {"white" : piece_types.copy(), "black" : piece_types.copy()}
		self.king = {"white" : None, "black" : None} # We need to keep track of the king, because he is important
Sam Moore's avatar
Sam Moore committed
113 114
		self.max_moves = None
		self.moves = 0
Sam Moore's avatar
Sam Moore committed
115
		self.move_stack = []
Sam Moore's avatar
Sam Moore committed
116 117 118
		for c in ["black", "white"]:
			del self.unrevealed_types[c]["unknown"]

119 120 121
		if style == "empty":
			return

Sam Moore's avatar
Sam Moore committed
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
		# Add all the pieces with known primary types
		for i in range(0, 2):
			
			s = ["black", "white"][i]
			c = self.pieces[s]
			y = [0, h-1][i]

			c.append(Piece(s, 0, y, ["rook"]))
			c.append(Piece(s, 1, y, ["knight"]))
			c.append(Piece(s, 2, y, ["bishop"]))
			k = Piece(s, 3, y, ["king", "king"]) # There can only be one ruler!
			k.current_type = "king"
			self.king[s] = k
			c.append(k)
			c.append(Piece(s, 4, y, ["queen"])) # Apparently he may have multiple wives though.
			c.append(Piece(s, 5, y, ["bishop"]))
			c.append(Piece(s, 6, y, ["knight"]))
			c.append(Piece(s, 7, y, ["rook"]))
			
			if y == 0: 
				y += 1 
			else: 
				y -= 1
			
			# Lots of pawn
			for x in range(0, w):
				c.append(Piece(s, x, y, ["pawn"]))

			types_left = {}
			types_left.update(piece_types)
			del types_left["king"] # We don't want one of these randomly appearing (although it might make things interesting...)
			del types_left["unknown"] # We certainly don't want these!
			for piece in c:
				# Add to grid
				self.grid[piece.x][piece.y] = piece 

				if len(piece.types) > 1:
					continue				
				if style == "agent": # Assign placeholder "unknown" secondary type
					piece.types.append("unknown")
					continue

				elif style == "quantum":
					# The master allocates the secondary types
					choice = types_left.keys()[random.randint(0, len(types_left.keys())-1)]
					types_left[choice] -= 1
					if types_left[choice] <= 0:
						del types_left[choice]
Sam Moore's avatar
Sam Moore committed
170
					piece.types.append('?' + choice)
Sam Moore's avatar
Sam Moore committed
171 172 173 174 175 176 177 178 179 180 181 182
				elif style == "classical":
					piece.types.append(piece.types[0])
					piece.current_type = piece.types[0]
					piece.choice = 0

	def clone(self):
		newboard = Board(master = False)
		newpieces = newboard.pieces["white"] + newboard.pieces["black"]
		mypieces = self.pieces["white"] + self.pieces["black"]

		for i in range(len(mypieces)):
			newpieces[i].init_from_copy(mypieces[i])
Sam Moore's avatar
Sam Moore committed
183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
	
	# Reset the board from a string
	def reset_board(self, s):
		self.pieces = {"white" : [], "black" : []}
		self.king = {"white" : None, "black" : None}
		self.grid = [[None] * w for _ in range(h)]
		for x in range(w):
			for y in range(h):
				self.grid[x][y] = None

		for line in s.split("\n"):
			if line == "":
				continue
			if line[0] == "#":
				continue

			tokens = line.split(" ")
			[x, y] = map(int, tokens[len(tokens)-1].split(","))
			current_type = tokens[1]
			types = map(lambda e : e.strip(" '[],"), line.split('[')[1].split(']')[0].split(','))
			
			target = Piece(tokens[0], x, y, types)
			target.current_type = current_type
			
			try:
				target.choice = types.index(current_type)
			except:
				target.choice = -1

			self.pieces[tokens[0]].append(target)
			if target.current_type == "king":
				self.king[tokens[0]] = target

			self.grid[x][y] = target
Sam Moore's avatar
Sam Moore committed
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
			

	def display_grid(self, window = None, grid_sz = [80,80]):
		if window == None:
			return # I was considering implementing a text only display, then I thought "Fuck that"

		# The indentation is getting seriously out of hand...
		for x in range(0, w):
			for y in range(0, h):
				if (x + y) % 2 == 0:
					c = pygame.Color(200,200,200)
				else:
					c = pygame.Color(64,64,64)
				pygame.draw.rect(window, c, (x*grid_sz[0], y*grid_sz[1], (x+1)*grid_sz[0], (y+1)*grid_sz[1]))

	def display_pieces(self, window = None, grid_sz = [80,80]):
		if window == None:
			return
		for p in self.pieces["white"] + self.pieces["black"]:
Sam Moore's avatar
Sam Moore committed
236
			p.draw(window, grid_sz, self.style)
Sam Moore's avatar
Sam Moore committed
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263

	# Draw the board in a pygame window
	def display(self, window = None):
		self.display_grid(window)
		self.display_pieces(window)
		

		

	def verify(self):
		for x in range(w):
			for y in range(h):
				if self.grid[x][y] == None:
					continue
				if (self.grid[x][y].x != x or self.grid[x][y].y != y):
					raise Exception(sys.argv[0] + ": MISMATCH " + str(self.grid[x][y]) + " should be at " + str(x) + "," + str(y))

	# Select a piece on the board (colour is the colour of whoever is doing the selecting)
	def select(self, x,y, colour=None):
		if not self.on_board(x, y): # Get on board everyone!
			raise Exception("BOUNDS")

		piece = self.grid[x][y]
		if piece == None:
			raise Exception("EMPTY")

		if colour != None and piece.colour != colour:
Sam Moore's avatar
Sam Moore committed
264
			raise Exception("COLOUR " + str(piece.colour) + " not " + str(colour))
Sam Moore's avatar
Sam Moore committed
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

		# I'm not quite sure why I made this return a string, but screw logical design
		return str(x) + " " + str(y) + " " + str(piece.select()) + " " + str(piece.current_type)


	# Update the board when a piece has been selected
	# "type" is apparently reserved, so I'll use "state"
	def update_select(self, x, y, type_index, state):
		piece = self.grid[x][y]
		if piece.types[type_index] == "unknown":
			if not state in self.unrevealed_types[piece.colour].keys():
				raise Exception("SANITY: Too many " + piece.colour + " " + state + "s")
			self.unrevealed_types[piece.colour][state] -= 1
			if self.unrevealed_types[piece.colour][state] <= 0:
				del self.unrevealed_types[piece.colour][state]

		piece.types[type_index] = state
		piece.current_type = state

		if len(self.possible_moves(piece)) <= 0:
			piece.deselect() # Piece can't move; deselect it
Sam Moore's avatar
Sam Moore committed
286 287 288
			
		# Piece needs to recalculate moves
		piece.possible_moves = None
Sam Moore's avatar
Sam Moore committed
289 290 291
		
	# Update the board when a piece has been moved
	def update_move(self, x, y, x2, y2):
Sam Moore's avatar
Sam Moore committed
292
				
Sam Moore's avatar
Sam Moore committed
293
		piece = self.grid[x][y]
Sam Moore's avatar
Sam Moore committed
294 295 296
		#print "Moving " + str(x) + "," + str(y) + " to " + str(x2) + "," + str(y2) + "; possible_moves are " + str(self.possible_moves(piece))
		
		if not [x2,y2] in self.possible_moves(piece):
297
			raise Exception("ILLEGAL move " + str(x2)+","+str(y2))
Sam Moore's avatar
Sam Moore committed
298
		
Sam Moore's avatar
Sam Moore committed
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
		self.grid[x][y] = None
		taken = self.grid[x2][y2]
		if taken != None:
			if taken.current_type == "king":
				self.king[taken.colour] = None
			self.pieces[taken.colour].remove(taken)
		self.grid[x2][y2] = piece
		piece.x = x2
		piece.y = y2

		# If the piece is a pawn, and it reaches the final row, it becomes a queen
		# I know you are supposed to get a choice
		# But that would be effort
		if piece.current_type == "pawn" and ((piece.colour == "white" and piece.y == 0) or (piece.colour == "black" and piece.y == h-1)):
			if self.style == "classical":
				piece.types[0] = "queen"
				piece.types[1] = "queen"
			else:
				piece.types[piece.choice] = "queen"
			piece.current_type = "queen"

		piece.deselect() # Uncollapse (?) the wavefunction!
Sam Moore's avatar
Sam Moore committed
321
		self.moves += 1
Sam Moore's avatar
Sam Moore committed
322 323 324 325 326
		
		# All other pieces need to recalculate moves
		for p in self.pieces["white"] + self.pieces["black"]:
			p.possible_moves = None
		
Sam Moore's avatar
Sam Moore committed
327
		#self.verify()	
Sam Moore's avatar
Sam Moore committed
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383

	# Update the board from a string
	# Guesses what to do based on the format of the string
	def update(self, result):
		#print "Update called with \"" + str(result) + "\""
		# String always starts with 'x y'
		try:
			s = result.split(" ")
			[x,y] = map(int, s[0:2])	
		except:
			raise Exception("GIBBERISH \""+ str(result) + "\"") # Raise expectations

		piece = self.grid[x][y]
		if piece == None:
			raise Exception("EMPTY")

		# If a piece is being moved, the third token is '->'
		# We could get away with just using four integers, but that wouldn't look as cool
		if "->" in s:
			# Last two tokens are the destination
			try:
				[x2,y2] = map(int, s[3:])
			except:
				raise Exception("GIBBERISH \"" + str(result) + "\"") # Raise the alarm

			# Move the piece (take opponent if possible)
			self.update_move(x, y, x2, y2)
			
		else:
			# Otherwise we will just assume a piece has been selected
			try:
				type_index = int(s[2]) # We need to know which of the two types the piece is in; that's the third token
				state = s[3] # The last token is a string identifying the type
			except:
				raise Exception("GIBBERISH \"" + result + "\"") # Throw a hissy fit

			# Select the piece
			self.update_select(x, y, type_index, state)

		return result

	# Gets each piece that could reach the given square and the probability that it could reach that square	
	# Will include allied pieces that defend the attacker
	def coverage(self, x, y, colour = None, reject_allied = True):
		result = {}
		
		if colour == None:
			pieces = self.pieces["white"] + self.pieces["black"]
		else:
			pieces = self.pieces[colour]

		for p in pieces:
			prob = self.probability_grid(p, reject_allied)[x][y]
			if prob > 0:
				result.update({p : prob})
		
Sam Moore's avatar
Sam Moore committed
384
		#self.verify()
Sam Moore's avatar
Sam Moore committed
385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
		return result


		


	# Associates each square with a probability that the piece could move into it
	# Look, I'm doing all the hard work for you here...
	def probability_grid(self, p, reject_allied = True):
		
		result = [[0.0] * w for _ in range(h)]
		if not isinstance(p, Piece):
			return result

		if p.current_type != "unknown":
			#sys.stderr.write(sys.argv[0] + ": " + str(p) + " moves " + str(self.possible_moves(p, reject_allied)) + "\n")
			for point in self.possible_moves(p, reject_allied):
				result[point[0]][point[1]] = 1.0
			return result
		
		
		for i in range(len(p.types)):
			t = p.types[i]
			prob = 0.5
Sam Moore's avatar
Sam Moore committed
409
			if t == "unknown" or p.types[i][0] == '?':
Sam Moore's avatar
Sam Moore committed
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
				total_types = 0
				for t2 in self.unrevealed_types[p.colour].keys():
					total_types += self.unrevealed_types[p.colour][t2]
				
				for t2 in self.unrevealed_types[p.colour].keys():
					prob2 = float(self.unrevealed_types[p.colour][t2]) / float(total_types)
					p.current_type = t2
					for point in self.possible_moves(p, reject_allied):
						result[point[0]][point[1]] += prob2 * prob
				
			else:
				p.current_type = t
				for point in self.possible_moves(p, reject_allied):
					result[point[0]][point[1]] += prob
		
Sam Moore's avatar
Sam Moore committed
425
		#self.verify()
Sam Moore's avatar
Sam Moore committed
426 427 428 429 430 431 432 433 434 435 436
		p.current_type = "unknown"
		return result

	def prob_is_type(self, p, state):
		prob = 0.5
		result = 0
		for i in range(len(p.types)):
			t = p.types[i]
			if t == state:
				result += prob
				continue	
Sam Moore's avatar
Sam Moore committed
437
			if t == "unknown" or p.types[i][0] == '?':
Sam Moore's avatar
Sam Moore committed
438 439 440 441 442 443 444 445 446 447 448 449 450
				total_prob = 0
				for t2 in self.unrevealed_types[p.colour].keys():
					total_prob += self.unrevealed_types[p.colour][t2]
				for t2 in self.unrevealed_types[p.colour].keys():
					if t2 == state:
						result += prob * float(self.unrevealed_types[p.colour][t2]) / float(total_prob)
				


	# Get all squares that the piece could move into
	# This is probably inefficient, but I looked at some sample chess games and they seem to actually do things this way
	# reject_allied indicates whether squares occupied by allied pieces will be removed
	# (set to false to check for defense)
Sam Moore's avatar
Sam Moore committed
451
	def possible_moves(self, p, reject_allied = True, state=None):
Sam Moore's avatar
Sam Moore committed
452
		if p == None:
Sam Moore's avatar
Sam Moore committed
453 454 455 456 457 458 459 460 461
			raise Exception("SANITY: No piece")
		
		
		
		if state != None and state != p.current_type:
			old_type = p.current_type
			p.current_type = state
			result = self.possible_moves(p, reject_allied, state=None)
			p.current_type = old_type
Sam Moore's avatar
Sam Moore committed
462
			return result
Sam Moore's avatar
Sam Moore committed
463 464 465 466 467 468 469
		
		if p.possible_moves != None:
			return p.possible_moves
		
		
		result = []
		
Sam Moore's avatar
Sam Moore committed
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540

		
		if p.current_type == "unknown":
			raise Exception("SANITY: Piece state unknown")
			# The below commented out code causes things to break badly
			#for t in p.types:
			#	if t == "unknown":
			#		continue
			#	p.current_type = t
			#	result += self.possible_moves(p)						
			#p.current_type = "unknown"
			#return result

		if p.current_type == "king":
			result = [[p.x-1,p.y],[p.x+1,p.y],[p.x,p.y-1],[p.x,p.y+1], [p.x-1,p.y-1],[p.x-1,p.y+1],[p.x+1,p.y-1],[p.x+1,p.y+1]]
		elif p.current_type == "queen":
			for d in [[-1,0],[1,0],[0,-1],[0,1],[-1,-1],[-1,1],[1,-1],[1,1]]:
				result += self.scan(p.x, p.y, d[0], d[1])
		elif p.current_type == "bishop":
			for d in [[-1,-1],[-1,1],[1,-1],[1,1]]: # There's a reason why bishops move diagonally
				result += self.scan(p.x, p.y, d[0], d[1])
		elif p.current_type == "rook":
			for d in [[-1,0],[1,0],[0,-1],[0,1]]:
				result += self.scan(p.x, p.y, d[0], d[1])
		elif p.current_type == "knight":
			# I would use two lines, but I'm not sure how python likes that
			result = [[p.x-2, p.y-1], [p.x-2, p.y+1], [p.x+2, p.y-1], [p.x+2,p.y+1], [p.x-1,p.y-2], [p.x-1, p.y+2],[p.x+1,p.y-2],[p.x+1,p.y+2]]
		elif p.current_type == "pawn":
			if p.colour == "white":
				
				# Pawn can't move forward into occupied square
				if self.on_board(p.x, p.y-1) and self.grid[p.x][p.y-1] == None:
					result = [[p.x,p.y-1]]
				for f in [[p.x-1,p.y-1],[p.x+1,p.y-1]]:
					if not self.on_board(f[0], f[1]):
						continue
					if self.grid[f[0]][f[1]] != None:  # Pawn can take diagonally
						result.append(f)
				if p.y == h-2:
					# Slightly embarrassing if the pawn jumps over someone on its first move...
					if self.grid[p.x][p.y-1] == None and self.grid[p.x][p.y-2] == None:
						result.append([p.x, p.y-2])
			else:
				# Vice versa for the black pawn
				if self.on_board(p.x, p.y+1) and self.grid[p.x][p.y+1] == None:
					result = [[p.x,p.y+1]]

				for f in [[p.x-1,p.y+1],[p.x+1,p.y+1]]:
					if not self.on_board(f[0], f[1]):
						continue
					if self.grid[f[0]][f[1]] != None:
						#sys.stderr.write(sys.argv[0] + " : "+str(p) + " can take " + str(self.grid[f[0]][f[1]]) + "\n")
						result.append(f)
				if p.y == 1:
					if self.grid[p.x][p.y+1] == None and self.grid[p.x][p.y+2] == None:
						result.append([p.x, p.y+2])

			#sys.stderr.write(sys.argv[0] + " : possible_moves for " + str(p) + " " + str(result) + "\n")

		# Remove illegal moves
		# Note: The result[:] creates a copy of result, so that the result.remove calls don't fuck things up
		for point in result[:]: 

			if (point[0] < 0 or point[0] >= w) or (point[1] < 0 or point[1] >= h):
				result.remove(point) # Remove locations outside the board
				continue
			g = self.grid[point[0]][point[1]]
			
			if g != None and (g.colour == p.colour and reject_allied == True):
				result.remove(point) # Remove allied pieces
		
Sam Moore's avatar
Sam Moore committed
541 542 543
		#self.verify()
		
		p.possible_moves = result
Sam Moore's avatar
Sam Moore committed
544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
		return result


	# Scans in a direction until it hits a piece, returns all squares in the line
	# (includes the final square (which contains a piece), but not the original square)
	def scan(self, x, y, vx, vy):
		p = []
			
		xx = x
		yy = y
		while True:
			xx += vx
			yy += vy
			if not self.on_board(xx, yy):
				break
			if not [xx,yy] in p:
				p.append([xx, yy])
			g = self.grid[xx][yy]
			if g != None:
				return p	
					
		return p

Sam Moore's avatar
Sam Moore committed
567 568 569 570 571 572 573 574 575 576 577 578 579
	# Returns "white", "black" or "DRAW" if the game should end
	def end_condition(self):
		if self.king["white"] == None:
			if self.king["black"] == None:
				return "DRAW" # This shouldn't happen
			return "black"
		elif self.king["black"] == None:
			return "white"
		elif len(self.pieces["white"]) == 1 and len(self.pieces["black"]) == 1:
			return "DRAW"
		elif self.max_moves != None and self.moves > self.max_moves:
			return "DRAW"
		return None
Sam Moore's avatar
Sam Moore committed
580 581 582 583 584


	# I typed the full statement about 30 times before writing this function...
	def on_board(self, x, y):
		return (x >= 0 and x < w) and (y >= 0 and y < h)
Sam Moore's avatar
Sam Moore committed
585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
	
	# Pushes a move temporarily
	def push_move(self, piece, x, y):
		target = self.grid[x][y]
		self.move_stack.append([piece, target, piece.x, piece.y, x, y])
		[piece.x, piece.y] = [x, y]
		self.grid[x][y] = piece
		self.grid[piece.x][piece.y] = None
		
		for p in self.pieces["white"] + self.pieces["black"]:
			p.possible_moves = None
		
	# Restore move
	def pop_move(self):
		#print str(self.move_stack)
		[piece, target, x1, y1, x2, y2] = self.move_stack[len(self.move_stack)-1]
		self.move_stack = self.move_stack[:-1]
		piece.x = x1
		piece.y = y1
		self.grid[x1][y1] = piece
		if target != None:
			target.x = x2
			target.y = y2
		self.grid[x2][y2] = target
		
		for p in self.pieces["white"] + self.pieces["black"]:
				p.possible_moves = None
		
Sam Moore's avatar
Sam Moore committed
613
# --- board.py --- #
Sam Moore's avatar
Sam Moore committed
614
import subprocess
Sam Moore's avatar
Sam Moore committed
615 616
import select
import platform
617
import re
618

Sam Moore's avatar
Sam Moore committed
619 620
agent_timeout = -1.0 # Timeout in seconds for AI players to make moves
			# WARNING: Won't work for windows based operating systems
Sam Moore's avatar
Sam Moore committed
621

Sam Moore's avatar
Sam Moore committed
622 623
if platform.system() == "Windows":
	agent_timeout = -1 # Hence this
Sam Moore's avatar
Sam Moore committed
624

Sam Moore's avatar
Sam Moore committed
625 626 627 628 629
# A player who can't play
class Player():
	def __init__(self, name, colour):
		self.name = name
		self.colour = colour
Sam Moore's avatar
Sam Moore committed
630

Sam Moore's avatar
Sam Moore committed
631 632 633
	def update(self, result):
		pass

Sam Moore's avatar
Sam Moore committed
634 635 636
	def reset_board(self, s):
		pass

Sam Moore's avatar
Sam Moore committed
637
# Player that runs from another process
Sam Moore's avatar
Sam Moore committed
638
class ExternalAgent(Player):
Sam Moore's avatar
Sam Moore committed
639 640


Sam Moore's avatar
Sam Moore committed
641 642
	def __init__(self, name, colour):
		Player.__init__(self, name, colour)
Sam Moore's avatar
Sam Moore committed
643
		self.p = subprocess.Popen(name,bufsize=0,stdin=subprocess.PIPE, stdout=subprocess.PIPE, shell=True,universal_newlines=True)
Sam Moore's avatar
Sam Moore committed
644 645 646 647 648 649 650 651 652
		
		self.send_message(colour)

	def send_message(self, s):
		if agent_timeout > 0.0:
			ready = select.select([], [self.p.stdin], [], agent_timeout)[1]
		else:
			ready = [self.p.stdin]
		if self.p.stdin in ready:
Sam Moore's avatar
Sam Moore committed
653
			#sys.stderr.write("Writing \'" + s + "\' to " + str(self.p) + "\n")
Sam Moore's avatar
Sam Moore committed
654 655 656 657 658
			try:
				self.p.stdin.write(s + "\n")
			except:
				raise Exception("UNRESPONSIVE")
		else:
Sam Moore's avatar
Sam Moore committed
659
			raise Exception("TIMEOUT")
Sam Moore's avatar
Sam Moore committed
660 661 662 663 664 665 666

	def get_response(self):
		if agent_timeout > 0.0:
			ready = select.select([self.p.stdout], [], [], agent_timeout)[0]
		else:
			ready = [self.p.stdout]
		if self.p.stdout in ready:
Sam Moore's avatar
Sam Moore committed
667
			#sys.stderr.write("Reading from " + str(self.p) + " 's stdout...\n")
Sam Moore's avatar
Sam Moore committed
668
			try:
669
				result = self.p.stdout.readline().strip(" \t\r\n")
Sam Moore's avatar
Sam Moore committed
670 671
				#sys.stderr.write("Read \'" + result + "\' from " + str(self.p) + "\n")
				return result
Sam Moore's avatar
Sam Moore committed
672 673 674
			except: # Exception, e:
				raise Exception("UNRESPONSIVE")
		else:
Sam Moore's avatar
Sam Moore committed
675
			raise Exception("TIMEOUT")
Sam Moore's avatar
Sam Moore committed
676

Sam Moore's avatar
Sam Moore committed
677
	def select(self):
Sam Moore's avatar
Sam Moore committed
678 679 680

		self.send_message("SELECTION?")
		line = self.get_response()
Sam Moore's avatar
Sam Moore committed
681 682
		
		try:
683 684
			m = re.match("\s*(\d+)\s+(\d+)\s*", line)
			result = map(int, [m.group(1), m.group(2)])
Sam Moore's avatar
Sam Moore committed
685 686 687
		except:
			raise Exception("GIBBERISH \"" + str(line) + "\"")
		return result
Sam Moore's avatar
Sam Moore committed
688

Sam Moore's avatar
Sam Moore committed
689 690
	def update(self, result):
		#print "Update " + str(result) + " called for AgentPlayer"
Sam Moore's avatar
Sam Moore committed
691 692
		self.send_message(result)

Sam Moore's avatar
Sam Moore committed
693

Sam Moore's avatar
Sam Moore committed
694 695
	def get_move(self):
		
Sam Moore's avatar
Sam Moore committed
696 697 698
		self.send_message("MOVE?")
		line = self.get_response()
		
Sam Moore's avatar
Sam Moore committed
699
		try:
700 701 702
			m = re.match("\s*(\d+)\s+(\d+)\s*", line)
			result = map(int, [m.group(1), m.group(2)])

Sam Moore's avatar
Sam Moore committed
703 704 705
		except:
			raise Exception("GIBBERISH \"" + str(line) + "\"")
		return result
Sam Moore's avatar
Sam Moore committed
706

Sam Moore's avatar
Sam Moore committed
707 708 709 710 711 712
	def reset_board(self, s):
		self.send_message("BOARD")
		for line in s.split("\n"):
			self.send_message(line.strip(" \r\n"))
		self.send_message("END BOARD")

Sam Moore's avatar
Sam Moore committed
713 714
	def quit(self, final_result):
		try:
Sam Moore's avatar
Sam Moore committed
715
			self.send_message("QUIT " + final_result)
Sam Moore's avatar
Sam Moore committed
716 717
		except:
			self.p.kill()
Sam Moore's avatar
Sam Moore committed
718

Sam Moore's avatar
Sam Moore committed
719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
# So you want to be a player here?
class HumanPlayer(Player):
	def __init__(self, name, colour):
		Player.__init__(self, name, colour)
		
	# Select your preferred account
	def select(self):
		if isinstance(graphics, GraphicsThread):
			# Basically, we let the graphics thread do some shit and then return that information to the game thread
			graphics.cond.acquire()
			# We wait for the graphics thread to select a piece
			while graphics.stopped() == False and graphics.state["select"] == None:
				graphics.cond.wait() # The difference between humans and machines is that humans sleep
			select = graphics.state["select"]
			
			
			graphics.cond.release()
			if graphics.stopped():
				return [-1,-1]
			return [select.x, select.y]
		else:
			# Since I don't display the board in this case, I'm not sure why I filled it in...
			while True:
				sys.stdout.write("SELECTION?\n")
				try:
					p = map(int, sys.stdin.readline().strip("\r\n ").split(" "))
				except:
					sys.stderr.write("ILLEGAL GIBBERISH\n")
					continue
	# It's your move captain
	def get_move(self):
		if isinstance(graphics, GraphicsThread):
			graphics.cond.acquire()
			while graphics.stopped() == False and graphics.state["dest"] == None:
				graphics.cond.wait()
			graphics.cond.release()
			
			return graphics.state["dest"]
		else:
Sam Moore's avatar
Sam Moore committed
758

Sam Moore's avatar
Sam Moore committed
759 760 761 762 763 764 765
			while True:
				sys.stdout.write("MOVE?\n")
				try:
					p = map(int, sys.stdin.readline().strip("\r\n ").split(" "))
				except:
					sys.stderr.write("ILLEGAL GIBBERISH\n")
					continue
Sam Moore's avatar
Sam Moore committed
766

Sam Moore's avatar
Sam Moore committed
767 768
	# Are you sure you want to quit?
	def quit(self, final_result):
Sam Moore's avatar
Sam Moore committed
769 770
		if graphics == None:		
			sys.stdout.write("QUIT " + final_result + "\n")
Sam Moore's avatar
Sam Moore committed
771

Sam Moore's avatar
Sam Moore committed
772 773 774 775 776 777
	# Completely useless function
	def update(self, result):
		if isinstance(graphics, GraphicsThread):
			pass
		else:
			sys.stdout.write(result + "\n")	
Sam Moore's avatar
Sam Moore committed
778 779


Sam Moore's avatar
Sam Moore committed
780 781
# Default internal player (makes random moves)
class InternalAgent(Player):
Sam Moore's avatar
Sam Moore committed
782 783 784 785 786 787
	def __init__(self, name, colour):
		Player.__init__(self, name, colour)
		self.choice = None

		self.board = Board(style = "agent")

Sam Moore's avatar
Sam Moore committed
788 789 790 791 792 793 794


	def update(self, result):
		
		self.board.update(result)
		self.board.verify()

Sam Moore's avatar
Sam Moore committed
795 796 797
	def reset_board(self, s):
		self.board.reset_board(s)

Sam Moore's avatar
Sam Moore committed
798 799 800 801 802 803 804
	def quit(self, final_result):
		pass

class AgentRandom(InternalAgent):
	def __init__(self, name, colour):
		InternalAgent.__init__(self, name, colour)

Sam Moore's avatar
Sam Moore committed
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829
	def select(self):
		while True:
			self.choice = self.board.pieces[self.colour][random.randint(0, len(self.board.pieces[self.colour])-1)]
			all_moves = []
			# Check that the piece has some possibility to move
			tmp = self.choice.current_type
			if tmp == "unknown": # For unknown pieces, try both types
				for t in self.choice.types:
					if t == "unknown":
						continue
					self.choice.current_type = t
					all_moves += self.board.possible_moves(self.choice)
			else:
				all_moves = self.board.possible_moves(self.choice)
			self.choice.current_type = tmp
			if len(all_moves) > 0:
				break
		return [self.choice.x, self.choice.y]

	def get_move(self):
		moves = self.board.possible_moves(self.choice)
		move = moves[random.randint(0, len(moves)-1)]
		return move


Sam Moore's avatar
Sam Moore committed
830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
# Terrible, terrible hacks

def run_agent(agent):
	#sys.stderr.write(sys.argv[0] + " : Running agent " + str(agent) + "\n")
	while True:
		line = sys.stdin.readline().strip(" \r\n")
		if line == "SELECTION?":
			#sys.stderr.write(sys.argv[0] + " : Make selection\n")
			[x,y] = agent.select() # Gets your agent's selection
			#sys.stderr.write(sys.argv[0] + " : Selection was " + str(agent.choice) + "\n")
			sys.stdout.write(str(x) + " " + str(y) + "\n")				
		elif line == "MOVE?":
			#sys.stderr.write(sys.argv[0] + " : Make move\n")
			[x,y] = agent.get_move() # Gets your agent's move
			sys.stdout.write(str(x) + " " + str(y) + "\n")
		elif line.split(" ")[0] == "QUIT":
			#sys.stderr.write(sys.argv[0] + " : Quitting\n")
			agent.quit(" ".join(line.split(" ")[1:])) # Quits the game
			break
Sam Moore's avatar
Sam Moore committed
849 850 851 852 853 854 855 856
		elif line.split(" ")[0] == "BOARD":
			s = ""
			line = sys.stdin.readline().strip(" \r\n")
			while line != "END BOARD":
				s += line + "\n"
				line = sys.stdin.readline().strip(" \r\n")
			agent.board.reset_board(s)
			
Sam Moore's avatar
Sam Moore committed
857 858 859 860 861 862
		else:
			agent.update(line) # Updates agent.board
	return 0


# Sort of works?
863

Sam Moore's avatar
Sam Moore committed
864 865
class ExternalWrapper(ExternalAgent):
	def __init__(self, agent):
866
		run = "python -u -c \"import sys;import os;from qchess import *;agent = " + agent.__class__.__name__ + "('" + agent.name + "','"+agent.colour+"');sys.stdin.readline();sys.exit(run_agent(agent))\""
Sam Moore's avatar
Sam Moore committed
867 868 869 870
		# str(run)
		ExternalAgent.__init__(self, run, agent.colour)

	
871

Sam Moore's avatar
Sam Moore committed
872
# --- player.py --- #
Sam Moore's avatar
Sam Moore committed
873 874 875
# A sample agent


Sam Moore's avatar
Sam Moore committed
876
class AgentBishop(AgentRandom): # Inherits from AgentRandom (in qchess)
Sam Moore's avatar
Sam Moore committed
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921
	def __init__(self, name, colour):
		InternalAgent.__init__(self, name, colour)
		self.value = {"pawn" : 1, "bishop" : 3, "knight" : 3, "rook" : 5, "queen" : 9, "king" : 100, "unknown" : 4}

		self.aggression = 2.0 # Multiplier for scoring due to aggressive actions
		self.defence = 1.0 # Multiplier for scoring due to defensive actions
		
		self.depth = 0 # Current depth
		self.max_depth = 2 # Recurse this many times (for some reason, makes more mistakes when this is increased???)
		self.recurse_for = -1 # Recurse for the best few moves each times (less than 0 = all moves)

		for p in self.board.pieces["white"] + self.board.pieces["black"]:
			p.last_moves = None
			p.selected_moves = None

		

	def get_value(self, piece):
		if piece == None:
			return 0.0
		return float(self.value[piece.types[0]] + self.value[piece.types[1]]) / 2.0
		
	# Score possible moves for the piece
	
	def prioritise_moves(self, piece):

		#sys.stderr.write(sys.argv[0] + " : " + str(self) + " prioritise called for " + str(piece) + "\n")

		
		
		grid = self.board.probability_grid(piece)
		#sys.stderr.write("\t Probability grid " + str(grid) + "\n")
		moves = []
		for x in range(w):
			for y in range(h):
				if grid[x][y] < 0.3: # Throw out moves with < 30% probability
					#sys.stderr.write("\tReject " + str(x) + "," + str(y) + " (" + str(grid[x][y]) + ")\n")
					continue

				target = self.board.grid[x][y]
			
				
				
				
				# Get total probability that the move is protected
Sam Moore's avatar
Sam Moore committed
922 923 924
				self.board.push_move(piece, x, y)
				

Sam Moore's avatar
Sam Moore committed
925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946
				
				defenders = self.board.coverage(x, y, piece.colour, reject_allied = False)
				d_prob = 0.0
				for d in defenders.keys():
					d_prob += defenders[d]
				if len(defenders.keys()) > 0:
					d_prob /= float(len(defenders.keys()))

				if (d_prob > 1.0):
					d_prob = 1.0

				# Get total probability that the move is threatened
				attackers = self.board.coverage(x, y, opponent(piece.colour), reject_allied = False)
				a_prob = 0.0
				for a in attackers.keys():
					a_prob += attackers[a]
				if len(attackers.keys()) > 0:
					a_prob /= float(len(attackers.keys()))

				if (a_prob > 1.0):
					a_prob = 1.0

Sam Moore's avatar
Sam Moore committed
947 948
				self.board.pop_move()
				
Sam Moore's avatar
Sam Moore committed
949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035

				
				# Score of the move
				value = self.aggression * (1.0 + d_prob) * self.get_value(target) - self.defence * (1.0 - d_prob) * a_prob * self.get_value(piece)

				# Adjust score based on movement of piece out of danger
				attackers = self.board.coverage(piece.x, piece.y, opponent(piece.colour))
				s_prob = 0.0
				for a in attackers.keys():
					s_prob += attackers[a]
				if len(attackers.keys()) > 0:
					s_prob /= float(len(attackers.keys()))

				if (s_prob > 1.0):
					s_prob = 1.0
				value += self.defence * s_prob * self.get_value(piece)
				
				# Adjust score based on probability that the move is actually possible
				moves.append([[x, y], grid[x][y] * value])

		moves.sort(key = lambda e : e[1], reverse = True)
		#sys.stderr.write(sys.argv[0] + ": Moves for " + str(piece) + " are " + str(moves) + "\n")

		piece.last_moves = moves
		piece.selected_moves = None

		

		
		return moves

	def select_best(self, colour):

		self.depth += 1
		all_moves = {}
		for p in self.board.pieces[colour]:
			self.choice = p # Temporarily pick that piece
			m = self.prioritise_moves(p)
			if len(m) > 0:
				all_moves.update({p : m[0]})

		if len(all_moves.items()) <= 0:
			return None
		
		
		opts = all_moves.items()
		opts.sort(key = lambda e : e[1][1], reverse = True)

		if self.depth >= self.max_depth:
			self.depth -= 1
			return list(opts[0])

		if self.recurse_for >= 0:
			opts = opts[0:self.recurse_for]
		#sys.stderr.write(sys.argv[0] + " : Before recurse, options are " + str(opts) + "\n")

		# Take the best few moves, and recurse
		for choice in opts[0:self.recurse_for]:
			[xx,yy] = [choice[0].x, choice[0].y] # Remember position
			[nx,ny] = choice[1][0] # Target
			[choice[0].x, choice[0].y] = [nx, ny] # Set position
			target = self.board.grid[nx][ny] # Remember piece in spot
			self.board.grid[xx][yy] = None # Remove piece
			self.board.grid[nx][ny] = choice[0] # Replace with moving piece
			
			# Recurse
			best_enemy_move = self.select_best(opponent(choice[0].colour))
			choice[1][1] -= best_enemy_move[1][1] / float(self.depth + 1.0)
			
			[choice[0].x, choice[0].y] = [xx, yy] # Restore position
			self.board.grid[nx][ny] = target # Restore taken piece
			self.board.grid[xx][yy] = choice[0] # Restore moved piece
			
		

		opts.sort(key = lambda e : e[1][1], reverse = True)
		#sys.stderr.write(sys.argv[0] + " : After recurse, options are " + str(opts) + "\n")

		self.depth -= 1
		return list(opts[0])

		

	# Returns [x,y] of selected piece
	def select(self):
		#sys.stderr.write("Getting choice...")
		self.choice = self.select_best(self.colour)[0]
Sam Moore's avatar
Sam Moore committed
1036
		
Sam Moore's avatar
Sam Moore committed
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
		#sys.stderr.write(" Done " + str(self.choice)+"\n")
		return [self.choice.x, self.choice.y]
	
	# Returns [x,y] of square to move selected piece into
	def get_move(self):
		#sys.stderr.write("Choice is " + str(self.choice) + "\n")
		self.choice.selected_moves = self.choice.last_moves
		moves = self.prioritise_moves(self.choice)
		if len(moves) > 0:
			return moves[0][0]
		else:
Sam Moore's avatar
Sam Moore committed
1048
			return AgentRandom.get_move(self)
Sam Moore's avatar
Sam Moore committed
1049 1050

# --- agent_bishop.py --- #
1051 1052 1053 1054 1055
import multiprocessing

# Hacky alternative to using select for timing out players

# WARNING: Do not wrap around HumanPlayer or things breakify
Sam Moore's avatar
Sam Moore committed
1056
# WARNING: Do not use in general or things breakify
1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095

class Sleeper(multiprocessing.Process):
	def __init__(self, timeout):
		multiprocessing.Process.__init__(self)
		self.timeout = timeout

	def run(self):
		time.sleep(self.timeout)


class Worker(multiprocessing.Process):
	def __init__(self, function, args, q):
		multiprocessing.Process.__init__(self)
		self.function = function
		self.args = args
		self.q = q

	def run(self):
		#print str(self) + " runs " + str(self.function) + " with args " + str(self.args) 
		self.q.put(self.function(*self.args))
		
		

def TimeoutFunction(function, args, timeout):
	q = multiprocessing.Queue()
	w = Worker(function, args, q)
	s = Sleeper(timeout)
	w.start()
	s.start()
	while True: # Busy loop of crappyness
		if not w.is_alive():
			s.terminate()
			result = q.get()
			w.join()
			#print "TimeoutFunction gets " + str(result)
			return result
		elif not s.is_alive():
			w.terminate()
			s.join()
Sam Moore's avatar
Sam Moore committed
1096
			raise Exception("TIMEOUT")
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122

	
		

# A player that wraps another player and times out its moves
# Uses threads
# A (crappy) alternative to the use of select()
class TimeoutPlayer(Player):
	def __init__(self, base_player, timeout):
		Player.__init__(self, base_player.name, base_player.colour)
		self.base_player = base_player
		self.timeout = timeout
		
	def select(self):
		return TimeoutFunction(self.base_player.select, [], self.timeout)
		
	
	def get_move(self):
		return TimeoutFunction(self.base_player.get_move, [], self.timeout)

	def update(self, result):
		return TimeoutFunction(self.base_player.update, [result], self.timeout)

	def quit(self, final_result):
		return TimeoutFunction(self.base_player.quit, [final_result], self.timeout)
# --- timeout_player.py --- #
Sam Moore's avatar
Sam Moore committed
1123
import socket
Sam Moore's avatar
Sam Moore committed
1124 1125 1126 1127
import select

network_timeout_start = -1.0 # Timeout in seconds to wait for the start of a message
network_timeout_delay = 1.0 # Maximum time between two characters being received
Sam Moore's avatar
Sam Moore committed
1128 1129 1130 1131

class Network():
	def __init__(self, colour, address = None):
		self.socket = socket.socket()
Sam Moore's avatar
Sam Moore committed
1132
		#self.socket.setblocking(0)
Sam Moore's avatar
Sam Moore committed
1133 1134

		if colour == "white":
Sam Moore's avatar
Sam Moore committed
1135
			self.port = 4562
Sam Moore's avatar
Sam Moore committed
1136
		else:
Sam Moore's avatar
Sam Moore committed
1137
			self.port = 4563
Sam Moore's avatar
Sam Moore committed
1138 1139 1140

		self.src = None

Sam Moore's avatar
Sam Moore committed
1141 1142
	#	print str(self) + " listens on port " + str(self.port)

Sam Moore's avatar
Sam Moore committed
1143
		if address == None:
Sam Moore's avatar
Sam Moore committed
1144
			self.host = socket.gethostname()
Sam Moore's avatar
Sam Moore committed
1145 1146 1147 1148
			self.socket.bind((self.host, self.port))
			self.socket.listen(5)	

			self.src, self.address = self.socket.accept()
Sam Moore's avatar
Sam Moore committed
1149 1150 1151
			self.src.send("ok\n")
			if self.get_response() == "QUIT":
				self.src.close()
Sam Moore's avatar
Sam Moore committed
1152 1153
		else:
			self.host = address
Sam Moore's avatar
Sam Moore committed
1154
			self.socket.connect((address, self.port))
Sam Moore's avatar
Sam Moore committed
1155
			self.src = self.socket
Sam Moore's avatar
Sam Moore committed
1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
			self.src.send("ok\n")
			if self.get_response() == "QUIT":
				self.src.close()

	def get_response(self):
		# Timeout the start of the message (first character)
		if network_timeout_start > 0.0:
			ready = select.select([self.src], [], [], network_timeout_start)[0]
		else:
			ready = [self.src]
		if self.src in ready:
			s = self.src.recv(1)
		else:
			raise Exception("UNRESPONSIVE")

Sam Moore's avatar
Sam Moore committed
1171 1172

		while s[len(s)-1] != '\n':
Sam Moore's avatar
Sam Moore committed
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202
			# Timeout on each character in the message
			if network_timeout_delay > 0.0:
				ready = select.select([self.src], [], [], network_timeout_delay)[0]
			else:
				ready = [self.src]
			if self.src in ready:
				s += self.src.recv(1) 
			else:
				raise Exception("UNRESPONSIVE")

		return s.strip(" \r\n")

	def send_message(self,s):
		if network_timeout_start > 0.0:
			ready = select.select([], [self.src], [], network_timeout_start)[1]
		else:
			ready = [self.src]

		if self.src in ready:
			self.src.send(s + "\n")
		else:
			raise Exception("UNRESPONSIVE")

	def check_quit(self, s):
		s = s.split(" ")
		if s[0] == "QUIT":
			with game.lock:
				game.final_result = " ".join(s[1:]) + " " + str(opponent(self.colour))
			game.stop()
			return True
Sam Moore's avatar
Sam Moore committed
1203 1204 1205 1206

		

class NetworkSender(Player,Network):
Sam Moore's avatar
Sam Moore committed
1207
	def __init__(self, base_player, address = None):
Sam Moore's avatar
Sam Moore committed
1208 1209 1210
		self.base_player = base_player
		Player.__init__(self, base_player.name, base_player.colour)

Sam Moore's avatar
Sam Moore committed
1211 1212 1213 1214 1215 1216
		self.address = address

	def connect(self):
		Network.__init__(self, self.base_player.colour, self.address)


Sam Moore's avatar
Sam Moore committed
1217 1218 1219 1220 1221

	def select(self):
		[x,y] = self.base_player.select()
		choice = self.board.grid[x][y]
		s = str(x) + " " + str(y)
Sam Moore's avatar
Sam Moore committed
1222 1223
		#print str(self) + ".select sends " + s
		self.send_message(s)
Sam Moore's avatar
Sam Moore committed
1224 1225 1226 1227 1228
		return [x,y]

	def get_move(self):
		[x,y] = self.base_player.get_move()
		s = str(x) + " " + str(y)
Sam Moore's avatar
Sam Moore committed
1229 1230
		#print str(self) + ".get_move sends " + s
		self.send_message(s)
Sam Moore's avatar
Sam Moore committed
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
		return [x,y]

	def update(self, s):
		self.base_player.update(s)
		s = s.split(" ")
		[x,y] = map(int, s[0:2])
		selected = self.board.grid[x][y]
		if selected != None and selected.colour == self.colour and len(s) > 2 and not "->" in s:
			s = " ".join(s[0:3])
			for i in range(2):
				if selected.types_revealed[i] == True:
					s += " " + str(selected.types[i])
				else:
					s += " unknown"
Sam Moore's avatar
Sam Moore committed
1245 1246
			#print str(self) + ".update sends " + s
			self.send_message(s)
Sam Moore's avatar
Sam Moore committed
1247 1248 1249 1250
				

	def quit(self, final_result):
		self.base_player.quit(final_result)
Sam Moore's avatar
Sam Moore committed
1251
		#self.src.send("QUIT " + str(final_result) + "\n")
Sam Moore's avatar
Sam Moore committed
1252 1253 1254
		self.src.close()

class NetworkReceiver(Player,Network):
Sam Moore's avatar
Sam Moore committed
1255
	def __init__(self, colour, address=None):
Sam Moore's avatar
Sam Moore committed
1256 1257 1258
		
		Player.__init__(self, address, colour)

Sam Moore's avatar
Sam Moore committed
1259
		self.address = address
Sam Moore's avatar
Sam Moore committed
1260

Sam Moore's avatar
Sam Moore committed
1261 1262 1263 1264
		self.board = None

	def connect(self):
		Network.__init__(self, self.colour, self.address)
Sam Moore's avatar
Sam Moore committed
1265 1266 1267
			

	def select(self):
Sam Moore's avatar
Sam Moore committed
1268 1269 1270 1271 1272 1273 1274 1275 1276 1277
		
		s = self.get_response()
		#print str(self) + ".select gets " + s
		[x,y] = map(int,s.split(" "))
		if x == -1 and y == -1:
			#print str(self) + ".select quits the game"
			with game.lock:
				game.final_state = "network terminated " + self.colour
			game.stop()
		return [x,y]
Sam Moore's avatar
Sam Moore committed
1278
	def get_move(self):
Sam Moore's avatar
Sam Moore committed
1279 1280 1281 1282 1283 1284 1285 1286 1287
		s = self.get_response()
		#print str(self) + ".get_move gets " + s
		[x,y] = map(int,s.split(" "))
		if x == -1 and y == -1:
			#print str(self) + ".get_move quits the game"
			with game.lock:
				game.final_state = "network terminated " + self.colour
			game.stop()
		return [x,y]
Sam Moore's avatar
Sam Moore committed
1288 1289 1290 1291 1292 1293 1294

	def update(self, result):
		
		result = result.split(" ")
		[x,y] = map(int, result[0:2])
		selected = self.board.grid[x][y]
		if selected != None and selected.colour == self.colour and len(result) > 2 and not "->" in result:
Sam Moore's avatar
Sam Moore committed
1295 1296
			s = self.get_response()
			#print str(self) + ".update - receives " + str(s)
Sam Moore's avatar
Sam Moore committed
1297 1298 1299 1300 1301 1302 1303 1304 1305 1306
			s = s.split(" ")
			selected.choice = int(s[2])
			for i in range(2):
				selected.types[i] = str(s[3+i])
				if s[3+i] == "unknown":
					selected.types_revealed[i] = False
				else:
					selected.types_revealed[i] = True
			selected.current_type = selected.types[selected.choice]	
		else:
Sam Moore's avatar
Sam Moore committed
1307 1308
			pass
			#print str(self) + ".update - ignore result " + str(result)			
Sam Moore's avatar
Sam Moore committed
1309 1310 1311 1312 1313 1314
		

	def quit(self, final_result):
		self.src.close()
	
# --- network.py --- #
Sam Moore's avatar
Sam Moore committed
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
import threading

# A thread that can be stopped!
# Except it can only be stopped if it checks self.stopped() periodically
# So it can sort of be stopped
class StoppableThread(threading.Thread):
	def __init__(self):
		threading.Thread.__init__(self)
		self._stop = threading.Event()

	def stop(self):
		self._stop.set()

	def stopped(self):
		return self._stop.isSet()
# --- thread_util.py --- #
Sam Moore's avatar
Sam Moore committed
1331
log_files = []