qchess.py 34.7 KB
Newer Older
Sam Moore's avatar
Sam Moore committed
1
#!/usr/bin/python -u
Sam Moore's avatar
Sam Moore committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
# +++ piece.py +++ #
import random

# I know using non-abreviated strings is inefficient, but this is python, who cares?
# Oh, yeah, this stores the number of pieces of each type in a normal chess game
piece_types = {"pawn" : 8, "bishop" : 2, "knight" : 2, "rook" : 2, "queen" : 1, "king" : 1, "unknown" : 0}

# Class to represent a quantum chess piece
class Piece():
	def __init__(self, colour, x, y, types):
		self.colour = colour # Colour (string) either "white" or "black"
		self.x = x # x coordinate (0 - 8), none of this fancy 'a', 'b' shit here
		self.y = y # y coordinate (0 - 8)
		self.types = types # List of possible types the piece can be (should just be two)
		self.current_type = "unknown" # Current type
		self.choice = -1 # Index of the current type in self.types (-1 = unknown type)
		self.types_revealed = [True, False] # Whether the types are known (by default the first type is always known at game start)
		

		# 
		self.last_state = None
		self.move_pattern = None

		

	def init_from_copy(self, c):
		self.colour = c.colour
		self.x = c.x
		self.y = c.y
		self.types = c.types[:]
		self.current_type = c.current_type
		self.choice = c.choice
		self.types_revealed = c.types_revealed[:]

		self.last_state = None
		self.move_pattern = None

	

	# Make a string for the piece (used for debug)
	def __str__(self):
		return str(self.current_type) + " " + str(self.types) + " at " + str(self.x) + ","+str(self.y)  

	# Draw the piece in a pygame surface
	def draw(self, window, grid_sz = [80,80]):

		# First draw the image corresponding to self.current_type
		img = images[self.colour][self.current_type]
		rect = img.get_rect()
		offset = [-rect.width/2,-3*rect.height/4] 
		window.blit(img, (self.x * grid_sz[0] + grid_sz[0]/2 + offset[0], self.y * grid_sz[1] + grid_sz[1]/2 + offset[1]))
		
		
		# Draw the two possible types underneath the current_type image
		for i in range(len(self.types)):
			if self.types_revealed[i] == True:
				img = small_images[self.colour][self.types[i]]
			else:
				img = small_images[self.colour]["unknown"] # If the type hasn't been revealed, show a placeholder

			
			rect = img.get_rect()
			offset = [-rect.width/2,-rect.height/2] 
			
			if i == 0:
				target = (self.x * grid_sz[0] + grid_sz[0]/5 + offset[0], self.y * grid_sz[1] + 3*grid_sz[1]/4 + offset[1])				
			else:
				target = (self.x * grid_sz[0] + 4*grid_sz[0]/5 + offset[0], self.y * grid_sz[1] + 3*grid_sz[1]/4 + offset[1])				
				
			window.blit(img, target) # Blit shit
	
	# Collapses the wave function!		
	def select(self):
		if self.current_type == "unknown":
			self.choice = random.randint(0,1)
			self.current_type = self.types[self.choice]
			self.types_revealed[self.choice] = True
		return self.choice

	# Uncollapses (?) the wave function!
	def deselect(self):
		#print "Deselect called"
		if (self.x + self.y) % 2 != 0:
			if (self.types[0] != self.types[1]) or (self.types_revealed[0] == False or self.types_revealed[1] == False):
				self.current_type = "unknown"
				self.choice = -1
			else:
				self.choice = 0 # Both the two types are the same

	# The sad moment when you realise that you do not understand anything about a subject you studied for 4 years...
# --- piece.py --- #
Sam Moore's avatar
Sam Moore committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
# +++ board.py +++ #
[w,h] = [8,8] # Width and height of board(s)

# Class to represent a quantum chess board
class Board():
	# Initialise; if master=True then the secondary piece types are assigned
	#	Otherwise, they are left as unknown
	#	So you can use this class in Agent programs, and fill in the types as they are revealed
	def __init__(self, style="agent"):
		self.style = style
		self.pieces = {"white" : [], "black" : []}
		self.grid = [[None] * w for _ in range(h)] # 2D List (you can get arrays in python, somehow, but they scare me)
		self.unrevealed_types = {"white" : piece_types.copy(), "black" : piece_types.copy()}
		self.king = {"white" : None, "black" : None} # We need to keep track of the king, because he is important
		for c in ["black", "white"]:
			del self.unrevealed_types[c]["unknown"]

		# Add all the pieces with known primary types
		for i in range(0, 2):
			
			s = ["black", "white"][i]
			c = self.pieces[s]
			y = [0, h-1][i]

			c.append(Piece(s, 0, y, ["rook"]))
			c.append(Piece(s, 1, y, ["knight"]))
			c.append(Piece(s, 2, y, ["bishop"]))
			k = Piece(s, 3, y, ["king", "king"]) # There can only be one ruler!
			k.types_revealed[1] = True
			k.current_type = "king"
			self.king[s] = k
			c.append(k)
			c.append(Piece(s, 4, y, ["queen"])) # Apparently he may have multiple wives though.
			c.append(Piece(s, 5, y, ["bishop"]))
			c.append(Piece(s, 6, y, ["knight"]))
			c.append(Piece(s, 7, y, ["rook"]))
			
			if y == 0: 
				y += 1 
			else: 
				y -= 1
			
			# Lots of pawn
			for x in range(0, w):
				c.append(Piece(s, x, y, ["pawn"]))

			types_left = {}
			types_left.update(piece_types)
			del types_left["king"] # We don't want one of these randomly appearing (although it might make things interesting...)
			del types_left["unknown"] # We certainly don't want these!
			for piece in c:
				# Add to grid
				self.grid[piece.x][piece.y] = piece 

				if len(piece.types) > 1:
					continue				
				if style == "agent": # Assign placeholder "unknown" secondary type
					piece.types.append("unknown")
					continue

				elif style == "quantum":
					# The master allocates the secondary types
					choice = types_left.keys()[random.randint(0, len(types_left.keys())-1)]
					types_left[choice] -= 1
					if types_left[choice] <= 0:
						del types_left[choice]
					piece.types.append(choice)
				elif style == "classical":
					piece.types.append(piece.types[0])
					piece.current_type = piece.types[0]
					piece.types_revealed[1] = True
					piece.choice = 0

	def clone(self):
		newboard = Board(master = False)
		newpieces = newboard.pieces["white"] + newboard.pieces["black"]
		mypieces = self.pieces["white"] + self.pieces["black"]

		for i in range(len(mypieces)):
			newpieces[i].init_from_copy(mypieces[i])
			

	def display_grid(self, window = None, grid_sz = [80,80]):
		if window == None:
			return # I was considering implementing a text only display, then I thought "Fuck that"

		# The indentation is getting seriously out of hand...
		for x in range(0, w):
			for y in range(0, h):
				if (x + y) % 2 == 0:
					c = pygame.Color(200,200,200)
				else:
					c = pygame.Color(64,64,64)
				pygame.draw.rect(window, c, (x*grid_sz[0], y*grid_sz[1], (x+1)*grid_sz[0], (y+1)*grid_sz[1]))

	def display_pieces(self, window = None, grid_sz = [80,80]):
		if window == None:
			return
		for p in self.pieces["white"] + self.pieces["black"]:
			p.draw(window, grid_sz)

	# Draw the board in a pygame window
	def display(self, window = None):
		self.display_grid(window)
		self.display_pieces(window)
		

		

	def verify(self):
		for x in range(w):
			for y in range(h):
				if self.grid[x][y] == None:
					continue
				if (self.grid[x][y].x != x or self.grid[x][y].y != y):
					raise Exception(sys.argv[0] + ": MISMATCH " + str(self.grid[x][y]) + " should be at " + str(x) + "," + str(y))

	# Select a piece on the board (colour is the colour of whoever is doing the selecting)
	def select(self, x,y, colour=None):
		if not self.on_board(x, y): # Get on board everyone!
			raise Exception("BOUNDS")

		piece = self.grid[x][y]
		if piece == None:
			raise Exception("EMPTY")

		if colour != None and piece.colour != colour:
			raise Exception("COLOUR")

		# I'm not quite sure why I made this return a string, but screw logical design
		return str(x) + " " + str(y) + " " + str(piece.select()) + " " + str(piece.current_type)


	# Update the board when a piece has been selected
	# "type" is apparently reserved, so I'll use "state"
	def update_select(self, x, y, type_index, state):
		piece = self.grid[x][y]
		if piece.types[type_index] == "unknown":
			if not state in self.unrevealed_types[piece.colour].keys():
				raise Exception("SANITY: Too many " + piece.colour + " " + state + "s")
			self.unrevealed_types[piece.colour][state] -= 1
			if self.unrevealed_types[piece.colour][state] <= 0:
				del self.unrevealed_types[piece.colour][state]

		piece.types[type_index] = state
		piece.types_revealed[type_index] = True
		piece.current_type = state

		if len(self.possible_moves(piece)) <= 0:
			piece.deselect() # Piece can't move; deselect it
		
	# Update the board when a piece has been moved
	def update_move(self, x, y, x2, y2):
		piece = self.grid[x][y]
		self.grid[x][y] = None
		taken = self.grid[x2][y2]
		if taken != None:
			if taken.current_type == "king":
				self.king[taken.colour] = None
			self.pieces[taken.colour].remove(taken)
		self.grid[x2][y2] = piece
		piece.x = x2
		piece.y = y2

		# If the piece is a pawn, and it reaches the final row, it becomes a queen
		# I know you are supposed to get a choice
		# But that would be effort
		if piece.current_type == "pawn" and ((piece.colour == "white" and piece.y == 0) or (piece.colour == "black" and piece.y == h-1)):
			if self.style == "classical":
				piece.types[0] = "queen"
				piece.types[1] = "queen"
			else:
				piece.types[piece.choice] = "queen"
			piece.current_type = "queen"

		piece.deselect() # Uncollapse (?) the wavefunction!
		self.verify()	

	# Update the board from a string
	# Guesses what to do based on the format of the string
	def update(self, result):
		#print "Update called with \"" + str(result) + "\""
		# String always starts with 'x y'
		try:
			s = result.split(" ")
			[x,y] = map(int, s[0:2])	
		except:
			raise Exception("GIBBERISH \""+ str(result) + "\"") # Raise expectations

		piece = self.grid[x][y]
		if piece == None:
			raise Exception("EMPTY")

		# If a piece is being moved, the third token is '->'
		# We could get away with just using four integers, but that wouldn't look as cool
		if "->" in s:
			# Last two tokens are the destination
			try:
				[x2,y2] = map(int, s[3:])
			except:
				raise Exception("GIBBERISH \"" + str(result) + "\"") # Raise the alarm

			# Move the piece (take opponent if possible)
			self.update_move(x, y, x2, y2)
			
		else:
			# Otherwise we will just assume a piece has been selected
			try:
				type_index = int(s[2]) # We need to know which of the two types the piece is in; that's the third token
				state = s[3] # The last token is a string identifying the type
			except:
				raise Exception("GIBBERISH \"" + result + "\"") # Throw a hissy fit

			# Select the piece
			self.update_select(x, y, type_index, state)

		return result

	# Gets each piece that could reach the given square and the probability that it could reach that square	
	# Will include allied pieces that defend the attacker
	def coverage(self, x, y, colour = None, reject_allied = True):
		result = {}
		
		if colour == None:
			pieces = self.pieces["white"] + self.pieces["black"]
		else:
			pieces = self.pieces[colour]

		for p in pieces:
			prob = self.probability_grid(p, reject_allied)[x][y]
			if prob > 0:
				result.update({p : prob})
		
		self.verify()
		return result


		


	# Associates each square with a probability that the piece could move into it
	# Look, I'm doing all the hard work for you here...
	def probability_grid(self, p, reject_allied = True):
		
		result = [[0.0] * w for _ in range(h)]
		if not isinstance(p, Piece):
			return result

		if p.current_type != "unknown":
			#sys.stderr.write(sys.argv[0] + ": " + str(p) + " moves " + str(self.possible_moves(p, reject_allied)) + "\n")
			for point in self.possible_moves(p, reject_allied):
				result[point[0]][point[1]] = 1.0
			return result
		
		
		for i in range(len(p.types)):
			t = p.types[i]
			prob = 0.5
			if t == "unknown" or p.types_revealed[i] == False:
				total_types = 0
				for t2 in self.unrevealed_types[p.colour].keys():
					total_types += self.unrevealed_types[p.colour][t2]
				
				for t2 in self.unrevealed_types[p.colour].keys():
					prob2 = float(self.unrevealed_types[p.colour][t2]) / float(total_types)
					p.current_type = t2
					for point in self.possible_moves(p, reject_allied):
						result[point[0]][point[1]] += prob2 * prob
				
			else:
				p.current_type = t
				for point in self.possible_moves(p, reject_allied):
					result[point[0]][point[1]] += prob
		
		self.verify()
		p.current_type = "unknown"
		return result

	def prob_is_type(self, p, state):
		prob = 0.5
		result = 0
		for i in range(len(p.types)):
			t = p.types[i]
			if t == state:
				result += prob
				continue	
			if t == "unknown" or p.types_revealed[i] == False:
				total_prob = 0
				for t2 in self.unrevealed_types[p.colour].keys():
					total_prob += self.unrevealed_types[p.colour][t2]
				for t2 in self.unrevealed_types[p.colour].keys():
					if t2 == state:
						result += prob * float(self.unrevealed_types[p.colour][t2]) / float(total_prob)
				


	# Get all squares that the piece could move into
	# This is probably inefficient, but I looked at some sample chess games and they seem to actually do things this way
	# reject_allied indicates whether squares occupied by allied pieces will be removed
	# (set to false to check for defense)
	def possible_moves(self, p, reject_allied = True):
		result = []
		if p == None:
			return result

		
		if p.current_type == "unknown":
			raise Exception("SANITY: Piece state unknown")
			# The below commented out code causes things to break badly
			#for t in p.types:
			#	if t == "unknown":
			#		continue
			#	p.current_type = t
			#	result += self.possible_moves(p)						
			#p.current_type = "unknown"
			#return result

		if p.current_type == "king":
			result = [[p.x-1,p.y],[p.x+1,p.y],[p.x,p.y-1],[p.x,p.y+1], [p.x-1,p.y-1],[p.x-1,p.y+1],[p.x+1,p.y-1],[p.x+1,p.y+1]]
		elif p.current_type == "queen":
			for d in [[-1,0],[1,0],[0,-1],[0,1],[-1,-1],[-1,1],[1,-1],[1,1]]:
				result += self.scan(p.x, p.y, d[0], d[1])
		elif p.current_type == "bishop":
			for d in [[-1,-1],[-1,1],[1,-1],[1,1]]: # There's a reason why bishops move diagonally
				result += self.scan(p.x, p.y, d[0], d[1])
		elif p.current_type == "rook":
			for d in [[-1,0],[1,0],[0,-1],[0,1]]:
				result += self.scan(p.x, p.y, d[0], d[1])
		elif p.current_type == "knight":
			# I would use two lines, but I'm not sure how python likes that
			result = [[p.x-2, p.y-1], [p.x-2, p.y+1], [p.x+2, p.y-1], [p.x+2,p.y+1], [p.x-1,p.y-2], [p.x-1, p.y+2],[p.x+1,p.y-2],[p.x+1,p.y+2]]
		elif p.current_type == "pawn":
			if p.colour == "white":
				
				# Pawn can't move forward into occupied square
				if self.on_board(p.x, p.y-1) and self.grid[p.x][p.y-1] == None:
					result = [[p.x,p.y-1]]
				for f in [[p.x-1,p.y-1],[p.x+1,p.y-1]]:
					if not self.on_board(f[0], f[1]):
						continue
					if self.grid[f[0]][f[1]] != None:  # Pawn can take diagonally
						result.append(f)
				if p.y == h-2:
					# Slightly embarrassing if the pawn jumps over someone on its first move...
					if self.grid[p.x][p.y-1] == None and self.grid[p.x][p.y-2] == None:
						result.append([p.x, p.y-2])
			else:
				# Vice versa for the black pawn
				if self.on_board(p.x, p.y+1) and self.grid[p.x][p.y+1] == None:
					result = [[p.x,p.y+1]]

				for f in [[p.x-1,p.y+1],[p.x+1,p.y+1]]:
					if not self.on_board(f[0], f[1]):
						continue
					if self.grid[f[0]][f[1]] != None:
						#sys.stderr.write(sys.argv[0] + " : "+str(p) + " can take " + str(self.grid[f[0]][f[1]]) + "\n")
						result.append(f)
				if p.y == 1:
					if self.grid[p.x][p.y+1] == None and self.grid[p.x][p.y+2] == None:
						result.append([p.x, p.y+2])

			#sys.stderr.write(sys.argv[0] + " : possible_moves for " + str(p) + " " + str(result) + "\n")

		# Remove illegal moves
		# Note: The result[:] creates a copy of result, so that the result.remove calls don't fuck things up
		for point in result[:]: 

			if (point[0] < 0 or point[0] >= w) or (point[1] < 0 or point[1] >= h):
				result.remove(point) # Remove locations outside the board
				continue
			g = self.grid[point[0]][point[1]]
			
			if g != None and (g.colour == p.colour and reject_allied == True):
				result.remove(point) # Remove allied pieces
		
		self.verify()
		return result


	# Scans in a direction until it hits a piece, returns all squares in the line
	# (includes the final square (which contains a piece), but not the original square)
	def scan(self, x, y, vx, vy):
		p = []
			
		xx = x
		yy = y
		while True:
			xx += vx
			yy += vy
			if not self.on_board(xx, yy):
				break
			if not [xx,yy] in p:
				p.append([xx, yy])
			g = self.grid[xx][yy]
			if g != None:
				return p	
					
		return p



	# I typed the full statement about 30 times before writing this function...
	def on_board(self, x, y):
		return (x >= 0 and x < w) and (y >= 0 and y < h)
# --- board.py --- #
Sam Moore's avatar
Sam Moore committed
498
499
# +++ player.py +++ #
import subprocess
Sam Moore's avatar
Sam Moore committed
500
501
502



Sam Moore's avatar
Sam Moore committed
503
504
505
506
507
# A player who can't play
class Player():
	def __init__(self, name, colour):
		self.name = name
		self.colour = colour
Sam Moore's avatar
Sam Moore committed
508

Sam Moore's avatar
Sam Moore committed
509
510
511
512
513
514
515
516
517
# Player that runs from another process
class AgentPlayer(Player):
	def __init__(self, name, colour):
		Player.__init__(self, name, colour)
		self.p = subprocess.Popen(name, stdin=subprocess.PIPE, stdout=subprocess.PIPE,stderr=sys.stderr)
		try:
			self.p.stdin.write(colour + "\n")
		except:
			raise Exception("UNRESPONSIVE")
Sam Moore's avatar
Sam Moore committed
518

Sam Moore's avatar
Sam Moore committed
519
520
521
522
523
524
525
526
527
528
529
530
	def select(self):
		
		#try:
		self.p.stdin.write("SELECTION?\n")
		line = self.p.stdout.readline().strip("\r\n ")
		#except:
		#	raise Exception("UNRESPONSIVE")
		try:
			result = map(int, line.split(" "))
		except:
			raise Exception("GIBBERISH \"" + str(line) + "\"")
		return result
Sam Moore's avatar
Sam Moore committed
531

Sam Moore's avatar
Sam Moore committed
532
533
534
535
536
537
	def update(self, result):
		#print "Update " + str(result) + " called for AgentPlayer"
#		try:
		self.p.stdin.write(result + "\n")
#		except:
#		raise Exception("UNRESPONSIVE")
Sam Moore's avatar
Sam Moore committed
538

Sam Moore's avatar
Sam Moore committed
539
540
541
542
543
544
545
546
547
548
549
550
	def get_move(self):
		
		try:
			self.p.stdin.write("MOVE?\n")
			line = self.p.stdout.readline().strip("\r\n ")
		except:
			raise Exception("UNRESPONSIVE")
		try:
			result = map(int, line.split(" "))
		except:
			raise Exception("GIBBERISH \"" + str(line) + "\"")
		return result
Sam Moore's avatar
Sam Moore committed
551

Sam Moore's avatar
Sam Moore committed
552
553
554
555
556
	def quit(self, final_result):
		try:
			self.p.stdin.write("QUIT " + final_result + "\n")
		except:
			self.p.kill()
Sam Moore's avatar
Sam Moore committed
557

Sam Moore's avatar
Sam Moore committed
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
# So you want to be a player here?
class HumanPlayer(Player):
	def __init__(self, name, colour):
		Player.__init__(self, name, colour)
		
	# Select your preferred account
	def select(self):
		if isinstance(graphics, GraphicsThread):
			# Basically, we let the graphics thread do some shit and then return that information to the game thread
			graphics.cond.acquire()
			# We wait for the graphics thread to select a piece
			while graphics.stopped() == False and graphics.state["select"] == None:
				graphics.cond.wait() # The difference between humans and machines is that humans sleep
			select = graphics.state["select"]
			
			
			graphics.cond.release()
			if graphics.stopped():
				return [-1,-1]
			return [select.x, select.y]
		else:
			# Since I don't display the board in this case, I'm not sure why I filled it in...
			while True:
				sys.stdout.write("SELECTION?\n")
				try:
					p = map(int, sys.stdin.readline().strip("\r\n ").split(" "))
				except:
					sys.stderr.write("ILLEGAL GIBBERISH\n")
					continue
	# It's your move captain
	def get_move(self):
		if isinstance(graphics, GraphicsThread):
			graphics.cond.acquire()
			while graphics.stopped() == False and graphics.state["dest"] == None:
				graphics.cond.wait()
			graphics.cond.release()
			
			return graphics.state["dest"]
		else:
Sam Moore's avatar
Sam Moore committed
597

Sam Moore's avatar
Sam Moore committed
598
599
600
601
602
603
604
			while True:
				sys.stdout.write("MOVE?\n")
				try:
					p = map(int, sys.stdin.readline().strip("\r\n ").split(" "))
				except:
					sys.stderr.write("ILLEGAL GIBBERISH\n")
					continue
Sam Moore's avatar
Sam Moore committed
605

Sam Moore's avatar
Sam Moore committed
606
607
608
	# Are you sure you want to quit?
	def quit(self, final_result):
		sys.stdout.write("QUIT " + final_result + "\n")
Sam Moore's avatar
Sam Moore committed
609

Sam Moore's avatar
Sam Moore committed
610
611
612
613
614
615
	# Completely useless function
	def update(self, result):
		if isinstance(graphics, GraphicsThread):
			pass
		else:
			sys.stdout.write(result + "\n")	
Sam Moore's avatar
Sam Moore committed
616
617


Sam Moore's avatar
Sam Moore committed
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
# Player that makes random moves
class AgentRandom(Player):
	def __init__(self, name, colour):
		Player.__init__(self, name, colour)
		self.choice = None

		self.board = Board(style = "agent")

	def select(self):
		while True:
			self.choice = self.board.pieces[self.colour][random.randint(0, len(self.board.pieces[self.colour])-1)]
			all_moves = []
			# Check that the piece has some possibility to move
			tmp = self.choice.current_type
			if tmp == "unknown": # For unknown pieces, try both types
				for t in self.choice.types:
					if t == "unknown":
						continue
					self.choice.current_type = t
					all_moves += self.board.possible_moves(self.choice)
			else:
				all_moves = self.board.possible_moves(self.choice)
			self.choice.current_type = tmp
			if len(all_moves) > 0:
				break
		return [self.choice.x, self.choice.y]

	def get_move(self):
		moves = self.board.possible_moves(self.choice)
		move = moves[random.randint(0, len(moves)-1)]
		return move

	def update(self, result):
		#sys.stderr.write(sys.argv[0] + " : Update board for AgentRandom\n")
		self.board.update(result)
		self.board.verify()

	def quit(self, final_result):
		pass
# --- player.py --- #
# +++ thread_util.py +++ #
import threading

# A thread that can be stopped!
# Except it can only be stopped if it checks self.stopped() periodically
# So it can sort of be stopped
class StoppableThread(threading.Thread):
	def __init__(self):
		threading.Thread.__init__(self)
		self._stop = threading.Event()

	def stop(self):
		self._stop.set()

	def stopped(self):
		return self._stop.isSet()
# --- thread_util.py --- #
# +++ game.py +++ #

# A thread that runs the game
class GameThread(StoppableThread):
	def __init__(self, board, players):
		StoppableThread.__init__(self)
		self.board = board
		self.players = players
		self.state = {"turn" : None} # The game state
		self.error = 0 # Whether the thread exits with an error
		self.lock = threading.RLock() #lock for access of self.state
		self.cond = threading.Condition() # conditional for some reason, I forgot
		self.final_result = ""

	# Run the game (run in new thread with start(), run in current thread with run())
	def run(self):
		result = ""
		while not self.stopped():
			
			for p in self.players:
				with self.lock:
					self.state["turn"] = p # "turn" contains the player who's turn it is
				#try:
				if True:
					[x,y] = p.select() # Player selects a square
					if self.stopped():
						break

					result = self.board.select(x, y, colour = p.colour)				
					for p2 in self.players:
						p2.update(result) # Inform players of what happened



					target = self.board.grid[x][y]
					if isinstance(graphics, GraphicsThread):
						with graphics.lock:
							graphics.state["moves"] = self.board.possible_moves(target)
							graphics.state["select"] = target

					time.sleep(turn_delay)


					if len(self.board.possible_moves(target)) == 0:
						#print "Piece cannot move"
						target.deselect()
						if isinstance(graphics, GraphicsThread):
							with graphics.lock:
								graphics.state["moves"] = None
								graphics.state["select"] = None
								graphics.state["dest"] = None
						continue

					try:
						[x2,y2] = p.get_move() # Player selects a destination
					except:
						self.stop()

					if self.stopped():
						break

					result = self.board.update_move(x, y, x2, y2)
					for p2 in self.players:
						p2.update(str(x) + " " + str(y) + " -> " + str(x2) + " " + str(y2)) # Inform players of what happened

					if isinstance(graphics, GraphicsThread):
						with graphics.lock:
							graphics.state["moves"] = [[x2,y2]]

					time.sleep(turn_delay)

					if isinstance(graphics, GraphicsThread):
						with graphics.lock:
Sam Moore's avatar
Sam Moore committed
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
							graphics.state["select"] = None
							graphics.state["dest"] = None
							graphics.state["moves"] = None

			# Commented out exception stuff for now, because it makes it impossible to tell if I made an IndentationError somewhere
				#except Exception,e:
					#result = "ILLEGAL " + e.message
					#sys.stderr.write(result + "\n")
					
					#self.stop()
					#with self.lock:
					#	self.final_result = self.state["turn"].colour + " " + "ILLEGAL"

				if self.board.king["black"] == None:
					if self.board.king["white"] == None:
						with self.lock:
							self.final_result = "DRAW"
					else:
						with self.lock:
							self.final_result = "white"
					self.stop()
				elif self.board.king["white"] == None:
					with self.lock:
						self.final_result = "black"
					self.stop()
						

				if self.stopped():
					break


		for p2 in self.players:
			p2.quit(self.final_result)

		graphics.stop()

	


def opponent(colour):
	if colour == "white":
		return "black"
	else:
		return "white"
# --- game.py --- #
# +++ graphics.py +++ #
import pygame

# Dictionary that stores the unicode character representations of the different pieces
# Chess was clearly the reason why unicode was invented
# For some reason none of the pygame chess implementations I found used them!
piece_char = {"white" : {"king" : u'\u2654',
			 "queen" : u'\u2655',
			 "rook" : u'\u2656',
			 "bishop" : u'\u2657',
			 "knight" : u'\u2658',
			 "pawn" : u'\u2659',
			 "unknown" : '?'},
		"black" : {"king" : u'\u265A',
			 "queen" : u'\u265B',
			 "rook" : u'\u265C',
			 "bishop" : u'\u265D',
			 "knight" : u'\u265E',
			 "pawn" : u'\u265F',
			 "unknown" : '?'}}

images = {"white" : {}, "black" : {}}
small_images = {"white" : {}, "black" : {}}

# A thread to make things pretty
class GraphicsThread(StoppableThread):
	def __init__(self, board, title = "UCC::Progcomp 2013 - QChess", grid_sz = [80,80]):
		StoppableThread.__init__(self)
		
		self.board = board
		pygame.init()
		self.window = pygame.display.set_mode((grid_sz[0] * w, grid_sz[1] * h))
		pygame.display.set_caption(title)
		self.grid_sz = grid_sz[:]
		self.state = {"select" : None, "dest" : None, "moves" : None, "overlay" : None, "coverage" : None}
		self.error = 0
		self.lock = threading.RLock()
		self.cond = threading.Condition()

		# Get the font sizes
		l_size = 5*(self.grid_sz[0] / 8)
		s_size = 3*(self.grid_sz[0] / 8)
		for p in piece_types.keys():
			c = "black"
			images[c].update({p : pygame.font.Font("data/DejaVuSans.ttf", l_size).render(piece_char[c][p], True,(0,0,0))})
			small_images[c].update({p : pygame.font.Font("data/DejaVuSans.ttf", s_size).render(piece_char[c][p],True,(0,0,0))})
			c = "white"

			images[c].update({p : pygame.font.Font("data/DejaVuSans.ttf", l_size+1).render(piece_char["black"][p], True,(255,255,255))})
			images[c][p].blit(pygame.font.Font("data/DejaVuSans.ttf", l_size).render(piece_char[c][p], True,(0,0,0)),(0,0))
			small_images[c].update({p : pygame.font.Font("data/DejaVuSans.ttf", s_size+1).render(piece_char["black"][p],True,(255,255,255))})
			small_images[c][p].blit(pygame.font.Font("data/DejaVuSans.ttf", s_size).render(piece_char[c][p],True,(0,0,0)),(0,0))

		
	


	# On the run from the world
	def run(self):
		
		while not self.stopped():
			
			self.board.display_grid(window = self.window, grid_sz = self.grid_sz) # Draw the board

			self.overlay()

			self.board.display_pieces(window = self.window, grid_sz = self.grid_sz) # Draw the board		

			pygame.display.flip()

			for event in pygame.event.get():
				if event.type == pygame.QUIT:
					if isinstance(game, GameThread):
						with game.lock:
							game.final_result = "terminated"
						game.stop()
					self.stop()
					break
				elif event.type == pygame.MOUSEBUTTONDOWN:
					self.mouse_down(event)
				elif event.type == pygame.MOUSEBUTTONUP:
					self.mouse_up(event)
					

				
								
						
						
		self.message("Game ends, result \""+str(game.final_result) + "\"")
		time.sleep(1)

		# Wake up anyone who is sleeping
		self.cond.acquire()
		self.cond.notify()
		self.cond.release()

		pygame.quit() # Time to say goodbye

	# Mouse release event handler
	def mouse_up(self, event):
		if event.button == 3:
			with self.lock:
				self.state["overlay"] = None
		elif event.button == 2:
			with self.lock:
				self.state["coverage"] = None	

	# Mouse click event handler
	def mouse_down(self, event):
		if event.button == 1:
			m = [event.pos[i] / self.grid_sz[i] for i in range(2)]
			if isinstance(game, GameThread):
				with game.lock:
					p = game.state["turn"]
			else:
					p = None
					
					
			if isinstance(p, HumanPlayer):
				with self.lock:
					s = self.board.grid[m[0]][m[1]]
					select = self.state["select"]
				if select == None:
					if s != None and s.colour != p.colour:
						self.message("Wrong colour") # Look at all this user friendliness!
						time.sleep(1)
						return
					# Notify human player of move
					self.cond.acquire()
					with self.lock:
						self.state["select"] = s
						self.state["dest"] = None
					self.cond.notify()
					self.cond.release()
					return

				if select == None:
					return
						
					
				if self.state["moves"] == None:
					return

				if not m in self.state["moves"]:
					self.message("Illegal Move") # I still think last year's mouse interface was adequate
					time.sleep(2)
					return
						
				with self.lock:
					if self.state["dest"] == None:
						self.cond.acquire()
						self.state["dest"] = m
						self.state["select"] = None
						self.state["moves"] = None
						self.cond.notify()
						self.cond.release()
		elif event.button == 3:
			m = [event.pos[i] / self.grid_sz[i] for i in range(len(event.pos))]
			if isinstance(game, GameThread):
				with game.lock:
					p = game.state["turn"]
			else:
				p = None
					
					
			if isinstance(p, HumanPlayer):
				with self.lock:
					self.state["overlay"] = self.board.probability_grid(self.board.grid[m[0]][m[1]])

		elif event.button == 2:
			m = [event.pos[i] / self.grid_sz[i] for i in range(len(event.pos))]
			if isinstance(game, GameThread):
				with game.lock:
					p = game.state["turn"]
			else:
				p = None
			
			
			if isinstance(p, HumanPlayer):
				with self.lock:
					self.state["coverage"] = self.board.coverage(m[0], m[1], None, self.state["select"])
				
	# Draw the overlay
	def overlay(self):

		square_img = pygame.Surface((self.grid_sz[0], self.grid_sz[1]),pygame.SRCALPHA) # A square image
		# Draw square over the selected piece
		with self.lock:
			select = self.state["select"]
		if select != None:
			mp = [self.grid_sz[i] * [select.x, select.y][i] for i in range(len(self.grid_sz))]
			square_img.fill(pygame.Color(0,255,0,64))
			self.window.blit(square_img, mp)
		# If a piece is selected, draw all reachable squares
		# (This quality user interface has been patented)
		with self.lock:
			m = self.state["moves"]
		if m != None:
			square_img.fill(pygame.Color(255,0,0,128)) # Draw them in blood red
			for move in m:
				mp = [self.grid_sz[i] * move[i] for i in range(2)]
				self.window.blit(square_img, mp)
		# If a piece is overlayed, show all squares that it has a probability to reach
		with self.lock:
			m = self.state["overlay"]
		if m != None:
			for x in range(w):
				for y in range(h):
					if m[x][y] > 0.0:
						mp = [self.grid_sz[i] * [x,y][i] for i in range(2)]
						square_img.fill(pygame.Color(255,0,255,int(m[x][y] * 128))) # Draw in purple
						self.window.blit(square_img, mp)
						font = pygame.font.Font(None, 14)
						text = font.render("{0:.2f}".format(round(m[x][y],2)), 1, pygame.Color(0,0,0))
						self.window.blit(text, mp)
				
		# If a square is selected, highlight all pieces that have a probability to reach it
		with self.lock:				
			m = self.state["coverage"]
		if m != None:
			for p in m:
				mp = [self.grid_sz[i] * [p.x,p.y][i] for i in range(2)]
				square_img.fill(pygame.Color(0,255,255, int(m[p] * 196))) # Draw in pale blue
				self.window.blit(square_img, mp)
				font = pygame.font.Font(None, 14)
				text = font.render("{0:.2f}".format(round(m[p],2)), 1, pygame.Color(0,0,0))
				self.window.blit(text, mp)
			# Draw a square where the mouse is
		# This also serves to indicate who's turn it is
		
		if isinstance(game, GameThread):
			with game.lock:
				turn = game.state["turn"]
		else:
			turn = None

		if isinstance(turn, HumanPlayer):
			mp = [self.grid_sz[i] * int(pygame.mouse.get_pos()[i] / self.grid_sz[i]) for i in range(2)]
			square_img.fill(pygame.Color(0,0,255,128))
			if turn.colour == "white":
				c = pygame.Color(255,255,255)
			else:
				c = pygame.Color(0,0,0)
			pygame.draw.rect(square_img, c, (0,0,self.grid_sz[0], self.grid_sz[1]), self.grid_sz[0]/10)
			self.window.blit(square_img, mp)

	# Message in a bottle
	def message(self, string, pos = None, colour = None, font_size = 32):
		font = pygame.font.Font(None, font_size)
		if colour == None:
			colour = pygame.Color(0,0,0)
		
		text = font.render(string, 1, colour)
	

		s = pygame.Surface((text.get_width(), text.get_height()), pygame.SRCALPHA)
		s.fill(pygame.Color(128,128,128))

		tmp = self.window.get_size()

		if pos == None:
			pos = (tmp[0] / 2 - text.get_width() / 2, tmp[1] / 3 - text.get_height())
		else:
			pos = (pos[0]*text.get_width() + tmp[0] / 2 - text.get_width() / 2, pos[1]*text.get_height() + tmp[1] / 3 - text.get_height())
		

		rect = (pos[0], pos[1], text.get_width(), text.get_height())
	
		pygame.draw.rect(self.window, pygame.Color(0,0,0), pygame.Rect(rect), 1)
		self.window.blit(s, pos)
		self.window.blit(text, pos)

		pygame.display.flip()

	def getstr(self, prompt = None):
		result = ""
		while True:
			#print "LOOP"
			if prompt != None:
				self.message(prompt)
				self.message(result, pos = (0, 1))
	
			for event in pygame.event.get():
				if event.type == pygame.KEYDOWN:
					if chr(event.key) == '\r':
						return result
					result += str(chr(event.key))
# --- graphics.py --- #
# +++ main.py +++ #
#!/usr/bin/python -u

# Do you know what the -u does? It unbuffers stdin and stdout
# I can't remember why, but last year things broke without that

"""
	UCC::Progcomp 2013 Quantum Chess game
	@author Sam Moore [SZM] "matches"
	@copyright The University Computer Club, Incorporated
		(ie: You can copy it for not for profit purposes)
"""

# system python modules or whatever they are called
import sys
import os
import time

turn_delay = 0.5
[game, graphics] = [None, None]


# The main function! It does the main stuff!
def main(argv):

	# Apparently python will silently treat things as local unless you do this
	# But (here's the fun part), only if you actually modify the variable.
	# For example, all those 'if graphics_enabled' conditions work in functions that never say it is global
	# Anyone who says "You should never use a global variable" can die in a fire
	global game
	global graphics

	# Magical argument parsing goes here
	if len(argv) == 1:
		players = [HumanPlayer("saruman", "white"), AgentRandom("sabbath", "black")]
	elif len(argv) == 2:
		players = [AgentPlayer(argv[1], "white"), HumanPlayer("shadow", "black"), ]
	elif len(argv) == 3:
		players = [AgentPlayer(argv[1], "white"), AgentPlayer(argv[2], "black")]

	# Construct the board!
	board = Board(style = "quantum")
	game = GameThread(board, players) # Construct a GameThread! Make it global! Damn the consequences!
	#try:
	if True:
		graphics = GraphicsThread(board, grid_sz = [64,64]) # Construct a GraphicsThread! I KNOW WHAT I'M DOING! BEAR WITH ME!
		game.start() # This runs in a new thread
	#except NameError:
	#	print "Run game in main thread"
	#	game.run() # Run game in the main thread (no need for joining)
	#	return game.error
	#except Exception, e:
	#	raise e
	#else:
	#	print "Normal"
		graphics.run()
		game.join()
		return game.error + graphics.error


# This is how python does a main() function...
if __name__ == "__main__":
	sys.exit(main(sys.argv))
# --- main.py --- #
Sam Moore's avatar
Sam Moore committed
1145
# EOF - created from update.sh on Wed Jan 23 22:01:52 WST 2013