#!/usr/bin/python -u # +++ piece.py +++ # import random # I know using non-abreviated strings is inefficient, but this is python, who cares? # Oh, yeah, this stores the number of pieces of each type in a normal chess game piece_types = {"pawn" : 8, "bishop" : 2, "knight" : 2, "rook" : 2, "queen" : 1, "king" : 1, "unknown" : 0} # Class to represent a quantum chess piece class Piece(): def __init__(self, colour, x, y, types): self.colour = colour # Colour (string) either "white" or "black" self.x = x # x coordinate (0 - 8), none of this fancy 'a', 'b' shit here self.y = y # y coordinate (0 - 8) self.types = types # List of possible types the piece can be (should just be two) self.current_type = "unknown" # Current type self.choice = -1 # Index of the current type in self.types (-1 = unknown type) self.types_revealed = [True, False] # Whether the types are known (by default the first type is always known at game start) # self.last_state = None self.move_pattern = None def init_from_copy(self, c): self.colour = c.colour self.x = c.x self.y = c.y self.types = c.types[:] self.current_type = c.current_type self.choice = c.choice self.types_revealed = c.types_revealed[:] self.last_state = None self.move_pattern = None # Make a string for the piece (used for debug) def __str__(self): return str(self.current_type) + " " + str(self.types) + " at " + str(self.x) + ","+str(self.y) # Draw the piece in a pygame surface def draw(self, window, grid_sz = [80,80]): # First draw the image corresponding to self.current_type img = images[self.colour][self.current_type] rect = img.get_rect() offset = [-rect.width/2,-3*rect.height/4] window.blit(img, (self.x * grid_sz[0] + grid_sz[0]/2 + offset[0], self.y * grid_sz[1] + grid_sz[1]/2 + offset[1])) # Draw the two possible types underneath the current_type image for i in range(len(self.types)): if self.types_revealed[i] == True: img = small_images[self.colour][self.types[i]] else: img = small_images[self.colour]["unknown"] # If the type hasn't been revealed, show a placeholder rect = img.get_rect() offset = [-rect.width/2,-rect.height/2] if i == 0: target = (self.x * grid_sz[0] + grid_sz[0]/5 + offset[0], self.y * grid_sz[1] + 3*grid_sz[1]/4 + offset[1]) else: target = (self.x * grid_sz[0] + 4*grid_sz[0]/5 + offset[0], self.y * grid_sz[1] + 3*grid_sz[1]/4 + offset[1]) window.blit(img, target) # Blit shit # Collapses the wave function! def select(self): if self.current_type == "unknown": self.choice = random.randint(0,1) self.current_type = self.types[self.choice] self.types_revealed[self.choice] = True return self.choice # Uncollapses (?) the wave function! def deselect(self): #print "Deselect called" if (self.x + self.y) % 2 != 0: if (self.types[0] != self.types[1]) or (self.types_revealed[0] == False or self.types_revealed[1] == False): self.current_type = "unknown" self.choice = -1 else: self.choice = 0 # Both the two types are the same # The sad moment when you realise that you do not understand anything about a subject you studied for 4 years... # --- piece.py --- # # +++ board.py +++ # [w,h] = [8,8] # Width and height of board(s) # Class to represent a quantum chess board class Board(): # Initialise; if master=True then the secondary piece types are assigned # Otherwise, they are left as unknown # So you can use this class in Agent programs, and fill in the types as they are revealed def __init__(self, style="agent"): self.style = style self.pieces = {"white" : [], "black" : []} self.grid = [[None] * w for _ in range(h)] # 2D List (you can get arrays in python, somehow, but they scare me) self.unrevealed_types = {"white" : piece_types.copy(), "black" : piece_types.copy()} self.king = {"white" : None, "black" : None} # We need to keep track of the king, because he is important for c in ["black", "white"]: del self.unrevealed_types[c]["unknown"] # Add all the pieces with known primary types for i in range(0, 2): s = ["black", "white"][i] c = self.pieces[s] y = [0, h-1][i] c.append(Piece(s, 0, y, ["rook"])) c.append(Piece(s, 1, y, ["knight"])) c.append(Piece(s, 2, y, ["bishop"])) k = Piece(s, 3, y, ["king", "king"]) # There can only be one ruler! k.types_revealed[1] = True k.current_type = "king" self.king[s] = k c.append(k) c.append(Piece(s, 4, y, ["queen"])) # Apparently he may have multiple wives though. c.append(Piece(s, 5, y, ["bishop"])) c.append(Piece(s, 6, y, ["knight"])) c.append(Piece(s, 7, y, ["rook"])) if y == 0: y += 1 else: y -= 1 # Lots of pawn for x in range(0, w): c.append(Piece(s, x, y, ["pawn"])) types_left = {} types_left.update(piece_types) del types_left["king"] # We don't want one of these randomly appearing (although it might make things interesting...) del types_left["unknown"] # We certainly don't want these! for piece in c: # Add to grid self.grid[piece.x][piece.y] = piece if len(piece.types) > 1: continue if style == "agent": # Assign placeholder "unknown" secondary type piece.types.append("unknown") continue elif style == "quantum": # The master allocates the secondary types choice = types_left.keys()[random.randint(0, len(types_left.keys())-1)] types_left[choice] -= 1 if types_left[choice] <= 0: del types_left[choice] piece.types.append(choice) elif style == "classical": piece.types.append(piece.types[0]) piece.current_type = piece.types[0] piece.types_revealed[1] = True piece.choice = 0 def clone(self): newboard = Board(master = False) newpieces = newboard.pieces["white"] + newboard.pieces["black"] mypieces = self.pieces["white"] + self.pieces["black"] for i in range(len(mypieces)): newpieces[i].init_from_copy(mypieces[i]) def display_grid(self, window = None, grid_sz = [80,80]): if window == None: return # I was considering implementing a text only display, then I thought "Fuck that" # The indentation is getting seriously out of hand... for x in range(0, w): for y in range(0, h): if (x + y) % 2 == 0: c = pygame.Color(200,200,200) else: c = pygame.Color(64,64,64) pygame.draw.rect(window, c, (x*grid_sz[0], y*grid_sz[1], (x+1)*grid_sz[0], (y+1)*grid_sz[1])) def display_pieces(self, window = None, grid_sz = [80,80]): if window == None: return for p in self.pieces["white"] + self.pieces["black"]: p.draw(window, grid_sz) # Draw the board in a pygame window def display(self, window = None): self.display_grid(window) self.display_pieces(window) def verify(self): for x in range(w): for y in range(h): if self.grid[x][y] == None: continue if (self.grid[x][y].x != x or self.grid[x][y].y != y): raise Exception(sys.argv[0] + ": MISMATCH " + str(self.grid[x][y]) + " should be at " + str(x) + "," + str(y)) # Select a piece on the board (colour is the colour of whoever is doing the selecting) def select(self, x,y, colour=None): if not self.on_board(x, y): # Get on board everyone! raise Exception("BOUNDS") piece = self.grid[x][y] if piece == None: raise Exception("EMPTY") if colour != None and piece.colour != colour: raise Exception("COLOUR") # I'm not quite sure why I made this return a string, but screw logical design return str(x) + " " + str(y) + " " + str(piece.select()) + " " + str(piece.current_type) # Update the board when a piece has been selected # "type" is apparently reserved, so I'll use "state" def update_select(self, x, y, type_index, state): piece = self.grid[x][y] if piece.types[type_index] == "unknown": if not state in self.unrevealed_types[piece.colour].keys(): raise Exception("SANITY: Too many " + piece.colour + " " + state + "s") self.unrevealed_types[piece.colour][state] -= 1 if self.unrevealed_types[piece.colour][state] <= 0: del self.unrevealed_types[piece.colour][state] piece.types[type_index] = state piece.types_revealed[type_index] = True piece.current_type = state if len(self.possible_moves(piece)) <= 0: piece.deselect() # Piece can't move; deselect it # Update the board when a piece has been moved def update_move(self, x, y, x2, y2): piece = self.grid[x][y] self.grid[x][y] = None taken = self.grid[x2][y2] if taken != None: if taken.current_type == "king": self.king[taken.colour] = None self.pieces[taken.colour].remove(taken) self.grid[x2][y2] = piece piece.x = x2 piece.y = y2 # If the piece is a pawn, and it reaches the final row, it becomes a queen # I know you are supposed to get a choice # But that would be effort if piece.current_type == "pawn" and ((piece.colour == "white" and piece.y == 0) or (piece.colour == "black" and piece.y == h-1)): if self.style == "classical": piece.types[0] = "queen" piece.types[1] = "queen" else: piece.types[piece.choice] = "queen" piece.current_type = "queen" piece.deselect() # Uncollapse (?) the wavefunction! self.verify() # Update the board from a string # Guesses what to do based on the format of the string def update(self, result): #print "Update called with \"" + str(result) + "\"" # String always starts with 'x y' try: s = result.split(" ") [x,y] = map(int, s[0:2]) except: raise Exception("GIBBERISH \""+ str(result) + "\"") # Raise expectations piece = self.grid[x][y] if piece == None: raise Exception("EMPTY") # If a piece is being moved, the third token is '->' # We could get away with just using four integers, but that wouldn't look as cool if "->" in s: # Last two tokens are the destination try: [x2,y2] = map(int, s[3:]) except: raise Exception("GIBBERISH \"" + str(result) + "\"") # Raise the alarm # Move the piece (take opponent if possible) self.update_move(x, y, x2, y2) else: # Otherwise we will just assume a piece has been selected try: type_index = int(s[2]) # We need to know which of the two types the piece is in; that's the third token state = s[3] # The last token is a string identifying the type except: raise Exception("GIBBERISH \"" + result + "\"") # Throw a hissy fit # Select the piece self.update_select(x, y, type_index, state) return result # Gets each piece that could reach the given square and the probability that it could reach that square # Will include allied pieces that defend the attacker def coverage(self, x, y, colour = None, reject_allied = True): result = {} if colour == None: pieces = self.pieces["white"] + self.pieces["black"] else: pieces = self.pieces[colour] for p in pieces: prob = self.probability_grid(p, reject_allied)[x][y] if prob > 0: result.update({p : prob}) self.verify() return result # Associates each square with a probability that the piece could move into it # Look, I'm doing all the hard work for you here... def probability_grid(self, p, reject_allied = True): result = [[0.0] * w for _ in range(h)] if not isinstance(p, Piece): return result if p.current_type != "unknown": #sys.stderr.write(sys.argv[0] + ": " + str(p) + " moves " + str(self.possible_moves(p, reject_allied)) + "\n") for point in self.possible_moves(p, reject_allied): result[point[0]][point[1]] = 1.0 return result for i in range(len(p.types)): t = p.types[i] prob = 0.5 if t == "unknown" or p.types_revealed[i] == False: total_types = 0 for t2 in self.unrevealed_types[p.colour].keys(): total_types += self.unrevealed_types[p.colour][t2] for t2 in self.unrevealed_types[p.colour].keys(): prob2 = float(self.unrevealed_types[p.colour][t2]) / float(total_types) p.current_type = t2 for point in self.possible_moves(p, reject_allied): result[point[0]][point[1]] += prob2 * prob else: p.current_type = t for point in self.possible_moves(p, reject_allied): result[point[0]][point[1]] += prob self.verify() p.current_type = "unknown" return result def prob_is_type(self, p, state): prob = 0.5 result = 0 for i in range(len(p.types)): t = p.types[i] if t == state: result += prob continue if t == "unknown" or p.types_revealed[i] == False: total_prob = 0 for t2 in self.unrevealed_types[p.colour].keys(): total_prob += self.unrevealed_types[p.colour][t2] for t2 in self.unrevealed_types[p.colour].keys(): if t2 == state: result += prob * float(self.unrevealed_types[p.colour][t2]) / float(total_prob) # Get all squares that the piece could move into # This is probably inefficient, but I looked at some sample chess games and they seem to actually do things this way # reject_allied indicates whether squares occupied by allied pieces will be removed # (set to false to check for defense) def possible_moves(self, p, reject_allied = True): result = [] if p == None: return result if p.current_type == "unknown": raise Exception("SANITY: Piece state unknown") # The below commented out code causes things to break badly #for t in p.types: # if t == "unknown": # continue # p.current_type = t # result += self.possible_moves(p) #p.current_type = "unknown" #return result if p.current_type == "king": result = [[p.x-1,p.y],[p.x+1,p.y],[p.x,p.y-1],[p.x,p.y+1], [p.x-1,p.y-1],[p.x-1,p.y+1],[p.x+1,p.y-1],[p.x+1,p.y+1]] elif p.current_type == "queen": for d in [[-1,0],[1,0],[0,-1],[0,1],[-1,-1],[-1,1],[1,-1],[1,1]]: result += self.scan(p.x, p.y, d[0], d[1]) elif p.current_type == "bishop": for d in [[-1,-1],[-1,1],[1,-1],[1,1]]: # There's a reason why bishops move diagonally result += self.scan(p.x, p.y, d[0], d[1]) elif p.current_type == "rook": for d in [[-1,0],[1,0],[0,-1],[0,1]]: result += self.scan(p.x, p.y, d[0], d[1]) elif p.current_type == "knight": # I would use two lines, but I'm not sure how python likes that result = [[p.x-2, p.y-1], [p.x-2, p.y+1], [p.x+2, p.y-1], [p.x+2,p.y+1], [p.x-1,p.y-2], [p.x-1, p.y+2],[p.x+1,p.y-2],[p.x+1,p.y+2]] elif p.current_type == "pawn": if p.colour == "white": # Pawn can't move forward into occupied square if self.on_board(p.x, p.y-1) and self.grid[p.x][p.y-1] == None: result = [[p.x,p.y-1]] for f in [[p.x-1,p.y-1],[p.x+1,p.y-1]]: if not self.on_board(f[0], f[1]): continue if self.grid[f[0]][f[1]] != None: # Pawn can take diagonally result.append(f) if p.y == h-2: # Slightly embarrassing if the pawn jumps over someone on its first move... if self.grid[p.x][p.y-1] == None and self.grid[p.x][p.y-2] == None: result.append([p.x, p.y-2]) else: # Vice versa for the black pawn if self.on_board(p.x, p.y+1) and self.grid[p.x][p.y+1] == None: result = [[p.x,p.y+1]] for f in [[p.x-1,p.y+1],[p.x+1,p.y+1]]: if not self.on_board(f[0], f[1]): continue if self.grid[f[0]][f[1]] != None: #sys.stderr.write(sys.argv[0] + " : "+str(p) + " can take " + str(self.grid[f[0]][f[1]]) + "\n") result.append(f) if p.y == 1: if self.grid[p.x][p.y+1] == None and self.grid[p.x][p.y+2] == None: result.append([p.x, p.y+2]) #sys.stderr.write(sys.argv[0] + " : possible_moves for " + str(p) + " " + str(result) + "\n") # Remove illegal moves # Note: The result[:] creates a copy of result, so that the result.remove calls don't fuck things up for point in result[:]: if (point[0] < 0 or point[0] >= w) or (point[1] < 0 or point[1] >= h): result.remove(point) # Remove locations outside the board continue g = self.grid[point[0]][point[1]] if g != None and (g.colour == p.colour and reject_allied == True): result.remove(point) # Remove allied pieces self.verify() return result # Scans in a direction until it hits a piece, returns all squares in the line # (includes the final square (which contains a piece), but not the original square) def scan(self, x, y, vx, vy): p = [] xx = x yy = y while True: xx += vx yy += vy if not self.on_board(xx, yy): break if not [xx,yy] in p: p.append([xx, yy]) g = self.grid[xx][yy] if g != None: return p return p # I typed the full statement about 30 times before writing this function... def on_board(self, x, y): return (x >= 0 and x < w) and (y >= 0 and y < h) # --- board.py --- # # +++ player.py +++ # import subprocess # A player who can't play class Player(): def __init__(self, name, colour): self.name = name self.colour = colour # Player that runs from another process class AgentPlayer(Player): def __init__(self, name, colour): Player.__init__(self, name, colour) self.p = subprocess.Popen(name, stdin=subprocess.PIPE, stdout=subprocess.PIPE,stderr=sys.stderr) try: self.p.stdin.write(colour + "\n") except: raise Exception("UNRESPONSIVE") def select(self): #try: self.p.stdin.write("SELECTION?\n") line = self.p.stdout.readline().strip("\r\n ") #except: # raise Exception("UNRESPONSIVE") try: result = map(int, line.split(" ")) except: raise Exception("GIBBERISH \"" + str(line) + "\"") return result def update(self, result): #print "Update " + str(result) + " called for AgentPlayer" # try: self.p.stdin.write(result + "\n") # except: # raise Exception("UNRESPONSIVE") def get_move(self): try: self.p.stdin.write("MOVE?\n") line = self.p.stdout.readline().strip("\r\n ") except: raise Exception("UNRESPONSIVE") try: result = map(int, line.split(" ")) except: raise Exception("GIBBERISH \"" + str(line) + "\"") return result def quit(self, final_result): try: self.p.stdin.write("QUIT " + final_result + "\n") except: self.p.kill() # So you want to be a player here? class HumanPlayer(Player): def __init__(self, name, colour): Player.__init__(self, name, colour) # Select your preferred account def select(self): if isinstance(graphics, GraphicsThread): # Basically, we let the graphics thread do some shit and then return that information to the game thread graphics.cond.acquire() # We wait for the graphics thread to select a piece while graphics.stopped() == False and graphics.state["select"] == None: graphics.cond.wait() # The difference between humans and machines is that humans sleep select = graphics.state["select"] graphics.cond.release() if graphics.stopped(): return [-1,-1] return [select.x, select.y] else: # Since I don't display the board in this case, I'm not sure why I filled it in... while True: sys.stdout.write("SELECTION?\n") try: p = map(int, sys.stdin.readline().strip("\r\n ").split(" ")) except: sys.stderr.write("ILLEGAL GIBBERISH\n") continue # It's your move captain def get_move(self): if isinstance(graphics, GraphicsThread): graphics.cond.acquire() while graphics.stopped() == False and graphics.state["dest"] == None: graphics.cond.wait() graphics.cond.release() return graphics.state["dest"] else: while True: sys.stdout.write("MOVE?\n") try: p = map(int, sys.stdin.readline().strip("\r\n ").split(" ")) except: sys.stderr.write("ILLEGAL GIBBERISH\n") continue # Are you sure you want to quit? def quit(self, final_result): sys.stdout.write("QUIT " + final_result + "\n") # Completely useless function def update(self, result): if isinstance(graphics, GraphicsThread): pass else: sys.stdout.write(result + "\n") # Player that makes random moves class AgentRandom(Player): def __init__(self, name, colour): Player.__init__(self, name, colour) self.choice = None self.board = Board(style = "agent") def select(self): while True: self.choice = self.board.pieces[self.colour][random.randint(0, len(self.board.pieces[self.colour])-1)] all_moves = [] # Check that the piece has some possibility to move tmp = self.choice.current_type if tmp == "unknown": # For unknown pieces, try both types for t in self.choice.types: if t == "unknown": continue self.choice.current_type = t all_moves += self.board.possible_moves(self.choice) else: all_moves = self.board.possible_moves(self.choice) self.choice.current_type = tmp if len(all_moves) > 0: break return [self.choice.x, self.choice.y] def get_move(self): moves = self.board.possible_moves(self.choice) move = moves[random.randint(0, len(moves)-1)] return move def update(self, result): #sys.stderr.write(sys.argv[0] + " : Update board for AgentRandom\n") self.board.update(result) self.board.verify() def quit(self, final_result): pass # --- player.py --- # # +++ thread_util.py +++ # import threading # A thread that can be stopped! # Except it can only be stopped if it checks self.stopped() periodically # So it can sort of be stopped class StoppableThread(threading.Thread): def __init__(self): threading.Thread.__init__(self) self._stop = threading.Event() def stop(self): self._stop.set() def stopped(self): return self._stop.isSet() # --- thread_util.py --- # # +++ game.py +++ # # A thread that runs the game class GameThread(StoppableThread): def __init__(self, board, players): StoppableThread.__init__(self) self.board = board self.players = players self.state = {"turn" : None} # The game state self.error = 0 # Whether the thread exits with an error self.lock = threading.RLock() #lock for access of self.state self.cond = threading.Condition() # conditional for some reason, I forgot self.final_result = "" # Run the game (run in new thread with start(), run in current thread with run()) def run(self): result = "" while not self.stopped(): for p in self.players: with self.lock: self.state["turn"] = p # "turn" contains the player who's turn it is #try: if True: [x,y] = p.select() # Player selects a square if self.stopped(): break result = self.board.select(x, y, colour = p.colour) for p2 in self.players: p2.update(result) # Inform players of what happened target = self.board.grid[x][y] if isinstance(graphics, GraphicsThread): with graphics.lock: graphics.state["moves"] = self.board.possible_moves(target) graphics.state["select"] = target time.sleep(turn_delay) if len(self.board.possible_moves(target)) == 0: #print "Piece cannot move" target.deselect() if isinstance(graphics, GraphicsThread): with graphics.lock: graphics.state["moves"] = None graphics.state["select"] = None graphics.state["dest"] = None continue try: [x2,y2] = p.get_move() # Player selects a destination except: self.stop() if self.stopped(): break result = self.board.update_move(x, y, x2, y2) for p2 in self.players: p2.update(str(x) + " " + str(y) + " -> " + str(x2) + " " + str(y2)) # Inform players of what happened if isinstance(graphics, GraphicsThread): with graphics.lock: graphics.state["moves"] = [[x2,y2]] time.sleep(turn_delay) if isinstance(graphics, GraphicsThread): with graphics.lock: graphics.state["select"] = None graphics.state["dest"] = None graphics.state["moves"] = None # Commented out exception stuff for now, because it makes it impossible to tell if I made an IndentationError somewhere #except Exception,e: #result = "ILLEGAL " + e.message #sys.stderr.write(result + "\n") #self.stop() #with self.lock: # self.final_result = self.state["turn"].colour + " " + "ILLEGAL" if self.board.king["black"] == None: if self.board.king["white"] == None: with self.lock: self.final_result = "DRAW" else: with self.lock: self.final_result = "white" self.stop() elif self.board.king["white"] == None: with self.lock: self.final_result = "black" self.stop() if self.stopped(): break for p2 in self.players: p2.quit(self.final_result) graphics.stop() def opponent(colour): if colour == "white": return "black" else: return "white" # --- game.py --- # # +++ graphics.py +++ # import pygame # Dictionary that stores the unicode character representations of the different pieces # Chess was clearly the reason why unicode was invented # For some reason none of the pygame chess implementations I found used them! piece_char = {"white" : {"king" : u'\u2654', "queen" : u'\u2655', "rook" : u'\u2656', "bishop" : u'\u2657', "knight" : u'\u2658', "pawn" : u'\u2659', "unknown" : '?'}, "black" : {"king" : u'\u265A', "queen" : u'\u265B', "rook" : u'\u265C', "bishop" : u'\u265D', "knight" : u'\u265E', "pawn" : u'\u265F', "unknown" : '?'}} images = {"white" : {}, "black" : {}} small_images = {"white" : {}, "black" : {}} # A thread to make things pretty class GraphicsThread(StoppableThread): def __init__(self, board, title = "UCC::Progcomp 2013 - QChess", grid_sz = [80,80]): StoppableThread.__init__(self) self.board = board pygame.init() self.window = pygame.display.set_mode((grid_sz[0] * w, grid_sz[1] * h)) pygame.display.set_caption(title) self.grid_sz = grid_sz[:] self.state = {"select" : None, "dest" : None, "moves" : None, "overlay" : None, "coverage" : None} self.error = 0 self.lock = threading.RLock() self.cond = threading.Condition() # Get the font sizes l_size = 5*(self.grid_sz[0] / 8) s_size = 3*(self.grid_sz[0] / 8) for p in piece_types.keys(): c = "black" images[c].update({p : pygame.font.Font("data/DejaVuSans.ttf", l_size).render(piece_char[c][p], True,(0,0,0))}) small_images[c].update({p : pygame.font.Font("data/DejaVuSans.ttf", s_size).render(piece_char[c][p],True,(0,0,0))}) c = "white" images[c].update({p : pygame.font.Font("data/DejaVuSans.ttf", l_size+1).render(piece_char["black"][p], True,(255,255,255))}) images[c][p].blit(pygame.font.Font("data/DejaVuSans.ttf", l_size).render(piece_char[c][p], True,(0,0,0)),(0,0)) small_images[c].update({p : pygame.font.Font("data/DejaVuSans.ttf", s_size+1).render(piece_char["black"][p],True,(255,255,255))}) small_images[c][p].blit(pygame.font.Font("data/DejaVuSans.ttf", s_size).render(piece_char[c][p],True,(0,0,0)),(0,0)) # On the run from the world def run(self): while not self.stopped(): self.board.display_grid(window = self.window, grid_sz = self.grid_sz) # Draw the board self.overlay() self.board.display_pieces(window = self.window, grid_sz = self.grid_sz) # Draw the board pygame.display.flip() for event in pygame.event.get(): if event.type == pygame.QUIT: if isinstance(game, GameThread): with game.lock: game.final_result = "terminated" game.stop() self.stop() break elif event.type == pygame.MOUSEBUTTONDOWN: self.mouse_down(event) elif event.type == pygame.MOUSEBUTTONUP: self.mouse_up(event) self.message("Game ends, result \""+str(game.final_result) + "\"") time.sleep(1) # Wake up anyone who is sleeping self.cond.acquire() self.cond.notify() self.cond.release() pygame.quit() # Time to say goodbye # Mouse release event handler def mouse_up(self, event): if event.button == 3: with self.lock: self.state["overlay"] = None elif event.button == 2: with self.lock: self.state["coverage"] = None # Mouse click event handler def mouse_down(self, event): if event.button == 1: m = [event.pos[i] / self.grid_sz[i] for i in range(2)] if isinstance(game, GameThread): with game.lock: p = game.state["turn"] else: p = None if isinstance(p, HumanPlayer): with self.lock: s = self.board.grid[m[0]][m[1]] select = self.state["select"] if select == None: if s != None and s.colour != p.colour: self.message("Wrong colour") # Look at all this user friendliness! time.sleep(1) return # Notify human player of move self.cond.acquire() with self.lock: self.state["select"] = s self.state["dest"] = None self.cond.notify() self.cond.release() return if select == None: return if self.state["moves"] == None: return if not m in self.state["moves"]: self.message("Illegal Move") # I still think last year's mouse interface was adequate time.sleep(2) return with self.lock: if self.state["dest"] == None: self.cond.acquire() self.state["dest"] = m self.state["select"] = None self.state["moves"] = None self.cond.notify() self.cond.release() elif event.button == 3: m = [event.pos[i] / self.grid_sz[i] for i in range(len(event.pos))] if isinstance(game, GameThread): with game.lock: p = game.state["turn"] else: p = None if isinstance(p, HumanPlayer): with self.lock: self.state["overlay"] = self.board.probability_grid(self.board.grid[m[0]][m[1]]) elif event.button == 2: m = [event.pos[i] / self.grid_sz[i] for i in range(len(event.pos))] if isinstance(game, GameThread): with game.lock: p = game.state["turn"] else: p = None if isinstance(p, HumanPlayer): with self.lock: self.state["coverage"] = self.board.coverage(m[0], m[1], None, self.state["select"]) # Draw the overlay def overlay(self): square_img = pygame.Surface((self.grid_sz[0], self.grid_sz[1]),pygame.SRCALPHA) # A square image # Draw square over the selected piece with self.lock: select = self.state["select"] if select != None: mp = [self.grid_sz[i] * [select.x, select.y][i] for i in range(len(self.grid_sz))] square_img.fill(pygame.Color(0,255,0,64)) self.window.blit(square_img, mp) # If a piece is selected, draw all reachable squares # (This quality user interface has been patented) with self.lock: m = self.state["moves"] if m != None: square_img.fill(pygame.Color(255,0,0,128)) # Draw them in blood red for move in m: mp = [self.grid_sz[i] * move[i] for i in range(2)] self.window.blit(square_img, mp) # If a piece is overlayed, show all squares that it has a probability to reach with self.lock: m = self.state["overlay"] if m != None: for x in range(w): for y in range(h): if m[x][y] > 0.0: mp = [self.grid_sz[i] * [x,y][i] for i in range(2)] square_img.fill(pygame.Color(255,0,255,int(m[x][y] * 128))) # Draw in purple self.window.blit(square_img, mp) font = pygame.font.Font(None, 14) text = font.render("{0:.2f}".format(round(m[x][y],2)), 1, pygame.Color(0,0,0)) self.window.blit(text, mp) # If a square is selected, highlight all pieces that have a probability to reach it with self.lock: m = self.state["coverage"] if m != None: for p in m: mp = [self.grid_sz[i] * [p.x,p.y][i] for i in range(2)] square_img.fill(pygame.Color(0,255,255, int(m[p] * 196))) # Draw in pale blue self.window.blit(square_img, mp) font = pygame.font.Font(None, 14) text = font.render("{0:.2f}".format(round(m[p],2)), 1, pygame.Color(0,0,0)) self.window.blit(text, mp) # Draw a square where the mouse is # This also serves to indicate who's turn it is if isinstance(game, GameThread): with game.lock: turn = game.state["turn"] else: turn = None if isinstance(turn, HumanPlayer): mp = [self.grid_sz[i] * int(pygame.mouse.get_pos()[i] / self.grid_sz[i]) for i in range(2)] square_img.fill(pygame.Color(0,0,255,128)) if turn.colour == "white": c = pygame.Color(255,255,255) else: c = pygame.Color(0,0,0) pygame.draw.rect(square_img, c, (0,0,self.grid_sz[0], self.grid_sz[1]), self.grid_sz[0]/10) self.window.blit(square_img, mp) # Message in a bottle def message(self, string, pos = None, colour = None, font_size = 32): font = pygame.font.Font(None, font_size) if colour == None: colour = pygame.Color(0,0,0) text = font.render(string, 1, colour) s = pygame.Surface((text.get_width(), text.get_height()), pygame.SRCALPHA) s.fill(pygame.Color(128,128,128)) tmp = self.window.get_size() if pos == None: pos = (tmp[0] / 2 - text.get_width() / 2, tmp[1] / 3 - text.get_height()) else: pos = (pos[0]*text.get_width() + tmp[0] / 2 - text.get_width() / 2, pos[1]*text.get_height() + tmp[1] / 3 - text.get_height()) rect = (pos[0], pos[1], text.get_width(), text.get_height()) pygame.draw.rect(self.window, pygame.Color(0,0,0), pygame.Rect(rect), 1) self.window.blit(s, pos) self.window.blit(text, pos) pygame.display.flip() def getstr(self, prompt = None): result = "" while True: #print "LOOP" if prompt != None: self.message(prompt) self.message(result, pos = (0, 1)) for event in pygame.event.get(): if event.type == pygame.KEYDOWN: if chr(event.key) == '\r': return result result += str(chr(event.key)) # --- graphics.py --- # # +++ main.py +++ # #!/usr/bin/python -u # Do you know what the -u does? It unbuffers stdin and stdout # I can't remember why, but last year things broke without that """ UCC::Progcomp 2013 Quantum Chess game @author Sam Moore [SZM] "matches" @copyright The University Computer Club, Incorporated (ie: You can copy it for not for profit purposes) """ # system python modules or whatever they are called import sys import os import time turn_delay = 0.5 [game, graphics] = [None, None] # The main function! It does the main stuff! def main(argv): # Apparently python will silently treat things as local unless you do this # But (here's the fun part), only if you actually modify the variable. # For example, all those 'if graphics_enabled' conditions work in functions that never say it is global # Anyone who says "You should never use a global variable" can die in a fire global game global graphics # Magical argument parsing goes here if len(argv) == 1: players = [HumanPlayer("saruman", "white"), AgentRandom("sabbath", "black")] elif len(argv) == 2: players = [AgentPlayer(argv[1], "white"), HumanPlayer("shadow", "black"), ] elif len(argv) == 3: players = [AgentPlayer(argv[1], "white"), AgentPlayer(argv[2], "black")] # Construct the board! board = Board(style = "quantum") game = GameThread(board, players) # Construct a GameThread! Make it global! Damn the consequences! #try: if True: graphics = GraphicsThread(board, grid_sz = [64,64]) # Construct a GraphicsThread! I KNOW WHAT I'M DOING! BEAR WITH ME! game.start() # This runs in a new thread #except NameError: # print "Run game in main thread" # game.run() # Run game in the main thread (no need for joining) # return game.error #except Exception, e: # raise e #else: # print "Normal" graphics.run() game.join() return game.error + graphics.error # This is how python does a main() function... if __name__ == "__main__": sys.exit(main(sys.argv)) # --- main.py --- # # EOF - created from update.sh on Wed Jan 23 22:01:52 WST 2013